Results 1  10
of
40
Combinatory Reduction Systems: introduction and survey
 THEORETICAL COMPUTER SCIENCE
, 1993
"... Combinatory Reduction Systems, or CRSs for short, were designed to combine the usual firstorder format of term rewriting with the presence of bound variables as in pure λcalculus and various typed calculi. Bound variables are also present in many other rewrite systems, such as systems with simpl ..."
Abstract

Cited by 83 (9 self)
 Add to MetaCart
Combinatory Reduction Systems, or CRSs for short, were designed to combine the usual firstorder format of term rewriting with the presence of bound variables as in pure λcalculus and various typed calculi. Bound variables are also present in many other rewrite systems, such as systems with simplification rules for proof normalization. The original idea of CRSs is due to Aczel, who introduced a restricted class of CRSs and, under the assumption of orthogonality, proved confluence. Orthogonality means that the rules are nonambiguous (no overlap leading to a critical pair) and leftlinear (no global comparison of terms necessary). We introduce the class of orthogonal CRSs, illustrated with many examples, discuss its expressive power, and give an outline of a short proof of confluence. This proof is a direct generalization of Aczel's original proof, which is close to the wellknown confluence proof for λcalculus by Tait and MartinLof. There is a wellknown connection between the para...
Rewriting Logic as a Semantic Framework for Concurrency: a Progress Report
, 1996
"... . This paper surveys the work of many researchers on rewriting logic since it was first introduced in 1990. The main emphasis is on the use of rewriting logic as a semantic framework for concurrency. The goal in this regard is to express as faithfully as possible a very wide range of concurrency mod ..."
Abstract

Cited by 83 (23 self)
 Add to MetaCart
. This paper surveys the work of many researchers on rewriting logic since it was first introduced in 1990. The main emphasis is on the use of rewriting logic as a semantic framework for concurrency. The goal in this regard is to express as faithfully as possible a very wide range of concurrency models, each on its own terms, avoiding any encodings or translations. Bringing very different models under a common semantic framework makes easier to understand what different models have in common and how they differ, to find deep connections between them, and to reason across their different formalisms. It becomes also much easier to achieve in a rigorous way the integration and interoperation of different models and languages whose combination offers attractive advantages. The logic and model theory of rewriting logic are also summarized, a number of current research directions are surveyed, and some concluding remarks about future directions are made. Table of Contents 1 In...
Interaction Systems I: The theory of optimal reductions
 Mathematical Structures in Computer Science
, 1994
"... We introduce a new class of higher order rewriting systems, called Interaction Systems (IS's). IS's come from Lafont's (Intuitionistic) Interaction Nets [Lafont 1990] by dropping the linearity constraint. In particular, we borrow from Interaction Nets the syntactical bipartitions o ..."
Abstract

Cited by 40 (7 self)
 Add to MetaCart
We introduce a new class of higher order rewriting systems, called Interaction Systems (IS's). IS's come from Lafont's (Intuitionistic) Interaction Nets [Lafont 1990] by dropping the linearity constraint. In particular, we borrow from Interaction Nets the syntactical bipartitions of operators into constructors and destructors and the principle of binary interaction. As a consequence, IS's are a subclass of Klop's Combinatory Reduction Systems [Klop 1980] where the CurryHoward analogy still "makes sense". Destructors and constructors respectively corresponds to left and right logical introduction rules, interaction is cut and reduction is cutelimination. Interaction Systems have been primarily motivated by the necessity of extending the practice of optimal evaluators for calculus [Lamping 1990, Gonthier et al. 1992a] to other computational constructs as conditionals and recursion. In this paper we focus on the theoretical aspects of optimal reductions. In particular, we ge...
Research Directions in Rewriting Logic
, 1998
"... Rewriting logic expresses an essential equivalence between logic and computation. System states are in bijective correspondence with formulas, and concurrent computations are in bijective correspondence with proofs. Given this equivalence between computation and logic, a rewriting logic axiom of the ..."
Abstract

Cited by 31 (12 self)
 Add to MetaCart
Rewriting logic expresses an essential equivalence between logic and computation. System states are in bijective correspondence with formulas, and concurrent computations are in bijective correspondence with proofs. Given this equivalence between computation and logic, a rewriting logic axiom of the form t \Gamma! t 0 has two readings. Computationally, it means that a fragment of a system 's state that is an instance of the pattern t can change to the corresponding instance of t 0 concurrently with any other state changes; logically, it just means that we can derive the formula t 0 from the formula t. Rewriting logic is entirely neutral about the structure and properties of the formulas/states t. They are entirely userdefinable as an algebraic data type satisfying certain equational axioms. Because of this ecumenical neutrality, rewriting logic has, from a logical viewpoint, good properties as a logical framework, in which many other logics can be naturally represented. And, computationally, it has also good properties as a semantic framework, in which many different system styles and models of concurrent computation and many different languages can be naturally expressed without any distorting encodings. The goal of this paper is to provide a relatively gentle introduction to rewriting logic, and to paint in broad strokes the main research directions that, since its introduction in 1990, have been pursued by a growing number of researchers in Europe, the US, and Japan. Key theoretical developments, as well as the main current applications of rewriting logic as a logical and semantic framework, and the work on formal reasoning to prove properties of specifications are surveyed.
On Higher Order Recursive Program Schemes
 In: Proc. of the 19 th International Colloquium on Trees in Algebra and Programming, CAAP'94
"... . We define Higher Order Recursive Program Schemes (HRPSs) by allowing metasubstitutions (as in the calculus) in righthand sides of function and quantifier definitions. A study of several kinds of similarity of redexes makes it possible to lift properties of (first order) Recursive Program Schemes ..."
Abstract

Cited by 20 (16 self)
 Add to MetaCart
. We define Higher Order Recursive Program Schemes (HRPSs) by allowing metasubstitutions (as in the calculus) in righthand sides of function and quantifier definitions. A study of several kinds of similarity of redexes makes it possible to lift properties of (first order) Recursive Program Schemes to the higher order case. The main result is the decidability of weak normalization in HRPSs, which immediately implies that HRPSs do not have full computational power. We analyze the structural properties of HRPSs and introduce several kinds of persistent expression reduction systems (PERSs) that enjoy similar properties. Finally, we design an optimal evaluation procedure for PERSs. 1 Introduction Higher Order Recursive Program Schemes (HRPSs) are recursive definitions of functions, predicates, and quantifiers, considered as rewriting systems. Similar definitions are used when one extends a theory by introducing new symbols [16]. 9aA , (øa(A)=a)A and 9!aA , 9aA 8a8b(A (b=a)A ) a = b) a...
HigherOrder Rewriting
 12th Int. Conf. on Rewriting Techniques and Applications, LNCS 2051
, 1999
"... This paper will appear in the proceedings of the 10th international conference on rewriting techniques and applications (RTA'99). c flSpringer Verlag. ..."
Abstract

Cited by 20 (1 self)
 Add to MetaCart
This paper will appear in the proceedings of the 10th international conference on rewriting techniques and applications (RTA'99). c flSpringer Verlag.
Interaction Systems II: The Practice of Optimal Reductions
 Theoretical Computer Science
, 1994
"... Lamping's optimal graph reduction technique for the calculus is generalized to a new class of higher order rewriting systems, called Interaction Systems. Interaction Systems provide a nice integration of the functional paradigm with a rich class of data structures (all inductive types), and so ..."
Abstract

Cited by 19 (6 self)
 Add to MetaCart
Lamping's optimal graph reduction technique for the calculus is generalized to a new class of higher order rewriting systems, called Interaction Systems. Interaction Systems provide a nice integration of the functional paradigm with a rich class of data structures (all inductive types), and some basic control flow constructs such as conditionals and (primitive or general) recursion. We describe a uniform and optimal implementation, in Lamping's style, for all these features. The paper is the natural continuation of [3], where we focused on the theoretical aspects of optimal reductions in Interaction Systems (family relation, labeling, extraction). 1 Introduction At the end of 70's, L'evy fixed the theoretical performance of what should be considered as an optimal implementation of the calculus. The optimal evaluator should always keep shared those redexes in a expression that have a common origin (e.g. that are copies of a same redex). For a long time, no implementation achieved L'...
The Bologna Optimal Higherorder Machine
 Journal of Functional Programming
, 1996
"... gzipped PostScript format via anonymous FTP from the area ftp.cs.unibo.it:/pub/TR/UBLCS or via WWW at ..."
Abstract

Cited by 18 (0 self)
 Add to MetaCart
gzipped PostScript format via anonymous FTP from the area ftp.cs.unibo.it:/pub/TR/UBLCS or via WWW at
The Longest Perpetual Reductions in Orthogonal Expression Reduction Systems
 In: Proc. of the 3 rd International Conference on Logical Foundations of Computer Science, LFCS'94, A. Nerode and Yu.V. Matiyasevich, eds., Springer LNCS
, 1994
"... We consider reductions in Orthogonal Expression Reduction Systems (OERS), that is, Orthogonal Term Rewriting Systems with bound variables and substitutions, as in the calculus. We design a strategy that for any given term t constructs a longest reduction starting from t if t is strongly normaliza ..."
Abstract

Cited by 18 (8 self)
 Add to MetaCart
We consider reductions in Orthogonal Expression Reduction Systems (OERS), that is, Orthogonal Term Rewriting Systems with bound variables and substitutions, as in the calculus. We design a strategy that for any given term t constructs a longest reduction starting from t if t is strongly normalizable, and constructs an infinite reduction otherwise. The Conservation Theorem for OERSs follows easily from the properties of the strategy. We develop a method for computing the length of a longest reduction starting from a strongly normalizable term. We study properties of pure substitutions and several kinds of similarity of redexes. We apply these results to construct an algorithm for computing lengths of longest reductions in strongly persistent OERSs that does not require actual transformation of the input term. As a corollary, we have an algorithm for computing lengths of longest developments in OERSs. 1 Introduction A strategy is perpetual if, given a term t, it constructs an infinit...