Results 1 
2 of
2
On the Foundations of Final Semantics: NonStandard Sets, Metric Spaces, Partial Orders
 PROCEEDINGS OF THE REX WORKSHOP ON SEMANTICS: FOUNDATIONS AND APPLICATIONS, VOLUME 666 OF LECTURE NOTES IN COMPUTER SCIENCE
, 1998
"... Canonical solutions of domain equations are shown to be final coalgebras, not only in a category of nonstandard sets (as already known), but also in categories of metric spaces and partial orders. Coalgebras are simple categorical structures generalizing the notion of postfixed point. They are ..."
Abstract

Cited by 48 (10 self)
 Add to MetaCart
(Show Context)
Canonical solutions of domain equations are shown to be final coalgebras, not only in a category of nonstandard sets (as already known), but also in categories of metric spaces and partial orders. Coalgebras are simple categorical structures generalizing the notion of postfixed point. They are also used here for giving a new comprehensive presentation of the (still) nonstandard theory of nonwellfounded sets (as nonstandard sets are usually called). This paper is meant to provide a basis to a more general project aiming at a full exploitation of the finality of the domains in the semantics of programming languages  concurrent ones among them. Such a final semantics enjoys uniformity and generality. For instance, semantic observational equivalences like bisimulation can be derived as instances of a single `coalgebraic' definition (introduced elsewhere), which is parametric of the functor appearing in the domain equation. Some properties of this general form of equivalence are also studied in this paper.
On the Foundations of Final Semantics: NonStandard Sets, Metric Spaces, Partial Orders
"... janr,turi9 Abstract. Canonical solutions of domain equations are shown to be final coalgebras, not only in a category of nonstandard sets (as already known), but also in categories of metric spaces and partial orders. Coalgebras are simple categorical structures generalizing the notion of postfi ..."
Abstract
 Add to MetaCart
janr,turi9 Abstract. Canonical solutions of domain equations are shown to be final coalgebras, not only in a category of nonstandard sets (as already known), but also in categories of metric spaces and partial orders. Coalgebras are simple categorical structures generalizing the notion of postfixed point. They are also used here for giving a new comprehensive presentation of the (still) nonstandard theory of nonwellfounded sets (as nonstandard sets are usually called). This paper is meant o provide a basis to a more general project aiming at a full exploitation of the finality of the domains in the semantics of programming languages concurrent ones among them. Such a final semantics enjoys uniformity and generality. For instance, semantic observational equivalences like bisimulation can be derived as instances of a single 'coalgebraic ' definition (introduced elsewhere), which is parametric of the functor appearing in the domain equation. Some properties of