Results 1 
5 of
5
An Alternative Markov Property for Chain Graphs
 Scand. J. Statist
, 1996
"... Graphical Markov models use graphs, either undirected, directed, or mixed, to represent possible dependences among statistical variables. Applications of undirected graphs (UDGs) include models for spatial dependence and image analysis, while acyclic directed graphs (ADGs), which are especially conv ..."
Abstract

Cited by 47 (4 self)
 Add to MetaCart
Graphical Markov models use graphs, either undirected, directed, or mixed, to represent possible dependences among statistical variables. Applications of undirected graphs (UDGs) include models for spatial dependence and image analysis, while acyclic directed graphs (ADGs), which are especially convenient for statistical analysis, arise in such fields as genetics and psychometrics and as models for expert systems and Bayesian belief networks. Lauritzen, Wermuth, and Frydenberg (LWF) introduced a Markov property for chain graphs, which are mixed graphs that can be used to represent simultaneously both causal and associative dependencies and which include both UDGs and ADGs as special cases. In this paper an alternative Markov property (AMP) for chain graphs is introduced, which in some ways is a more direct extension of the ADG Markov property than is the LWF property for chain graph. 1 INTRODUCTION Graphical Markov models use graphs, either undirected, directed, or mixed, to represent...
Chain Graph Models and their Causal Interpretations
 B
, 2001
"... Chain graphs are a natural generalization of directed acyclic graphs (DAGs) and undirected graphs. However, the apparent simplicity of chain graphs belies the subtlety of the conditional independence hypotheses that they represent. There are a number of simple and apparently plausible, but ultim ..."
Abstract

Cited by 46 (4 self)
 Add to MetaCart
Chain graphs are a natural generalization of directed acyclic graphs (DAGs) and undirected graphs. However, the apparent simplicity of chain graphs belies the subtlety of the conditional independence hypotheses that they represent. There are a number of simple and apparently plausible, but ultimately fallacious interpretations of chain graphs that are often invoked, implicitly or explicitly. These interpretations also lead to awed methods for applying background knowledge to model selection. We present a valid interpretation by showing how the distribution corresponding to a chain graph may be generated as the equilibrium distribution of dynamic models with feedback. These dynamic interpretations lead to a simple theory of intervention, extending the theory developed for DAGs. Finally, we contrast chain graph models under this interpretation with simultaneous equation models which have traditionally been used to model feedback in econometrics. Keywords: Causal model; cha...
Causal Inference in the Presence of Latent Variables and Selection Bias
 In Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence
"... This paper uses Bayesian network models for that investigation. Bayesian networks, or directed acyclic graph (DAG) models have proved very useful in representing both causal and statistical hypotheses. The nodes of the graph represent vertices, directed edges represent direct influences, and the top ..."
Abstract

Cited by 28 (4 self)
 Add to MetaCart
This paper uses Bayesian network models for that investigation. Bayesian networks, or directed acyclic graph (DAG) models have proved very useful in representing both causal and statistical hypotheses. The nodes of the graph represent vertices, directed edges represent direct influences, and the topology of the graph encodes statistical constraints. We will consider features of such models that can be determined from data under assumptions that are related to those routinely applied in experimental situations:
Cumulative distribution networks: Inference, estimation and applications of graphical models for cumulative distribution functions
, 2009
"... ..."
Probability distributions with summary graph structure
, 2008
"... A joint density of many variables may satisfy a possibly large set of independence statements, called its independence structure. Often the structure of interest is representable by a graph that consists of nodes representing variables and of edges that couple node pairs. We consider joint densities ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
A joint density of many variables may satisfy a possibly large set of independence statements, called its independence structure. Often the structure of interest is representable by a graph that consists of nodes representing variables and of edges that couple node pairs. We consider joint densities of this type, generated by a stepwise process in which all variables and dependences of interest are included. Otherwise, there are no constraints on the type of variables or on the form of the generating conditional densities. For the joint density that then results after marginalising and conditioning, we derive what we name the summary graph. It is seen to capture precisely the independence structure implied by the generating process, it identifies dependences which remain undistorted due to direct or indirect confounding and it alerts to such, possibly severe distortions in other parametrizations. Summary graphs preserve their form after marginalising and conditioning and they include multivariate regression chain graphs as special cases. We use operators for matrix representations of graphs to derive matrix results and translate these into special types of path. 1. Introduction. Graphical Markov