Results 1  10
of
75
Molecular Computation Of Solutions To Combinatorial Problems
, 1994
"... The tools of molecular biology are used to solve an instance of the directed Hamiltonian path problem. A small graph is encoded in molecules of DNA and the `operations' of the computation are performed with standard protocols and enzymes. This experiment demonstrates the feasibility of carrying ..."
Abstract

Cited by 721 (6 self)
 Add to MetaCart
The tools of molecular biology are used to solve an instance of the directed Hamiltonian path problem. A small graph is encoded in molecules of DNA and the `operations' of the computation are performed with standard protocols and enzymes. This experiment demonstrates the feasibility of carrying out computations at the molecular level.
On the Feasibility of Checking Temporal Integrity Constraints
, 1995
"... We analyze the computational feasibility of checking temporal integrity constraints formulated in some sublanguages of firstorder temporal logic. Our results illustrate the impact of the quantifier pattern on the complexity of this problem. The presence of a single quantifier in the scope of a temp ..."
Abstract

Cited by 41 (6 self)
 Add to MetaCart
We analyze the computational feasibility of checking temporal integrity constraints formulated in some sublanguages of firstorder temporal logic. Our results illustrate the impact of the quantifier pattern on the complexity of this problem. The presence of a single quantifier in the scope of a temporal operator makes the problem undecidable. On the other hand, if no quantifiers are in the scope of a temporal operator and all the quantifiers are universal, temporal integrity checking can be done in exponential time. 1 Introduction As temporal databases become more widely used in practice [27, 28], the need arises to address database integrity issues that are specific to such databases. In particular, it is necessary to generalize the standard notion of static integrity (involving single database states) to temporal integrity (involving sequences of database states). This work is the first attempt to date to analyze the computational feasibility of checking temporal integrity constrain...
Hypercomputation: computing more than the Turing machine
, 2002
"... In this report I provide an introduction to the burgeoning field of hypercomputation – the study of machines that can compute more than Turing machines. I take an extensive survey of many of the key concepts in the field, tying together the disparate ideas and presenting them in a structure which al ..."
Abstract

Cited by 38 (5 self)
 Add to MetaCart
In this report I provide an introduction to the burgeoning field of hypercomputation – the study of machines that can compute more than Turing machines. I take an extensive survey of many of the key concepts in the field, tying together the disparate ideas and presenting them in a structure which allows comparisons of the many approaches and results. To this I add several new results and draw out some interesting consequences of hypercomputation for several different disciplines. I begin with a succinct introduction to the classical theory of computation and its place amongst some of the negative results of the 20 th Century. I then explain how the ChurchTuring Thesis is commonly misunderstood and present new theses which better describe the possible limits on computability. Following this, I introduce ten different hypermachines (including three of my own) and discuss in some depth the manners in which they attain their power and the physical plausibility of each method. I then compare the powers of the different models using a device from recursion theory. Finally, I examine the implications of hypercomputation to mathematics, physics, computer science and philosophy. Perhaps the most important of these implications is that the negative mathematical results of Gödel, Turing and Chaitin are each dependent upon the nature of physics. This both weakens these results and provides strong links between mathematics and physics. I conclude that hypercomputation is of serious academic interest within many disciplines, opening new possibilities that were previously ignored because of long held misconceptions about the limits of computation.
Heterogeneous Active Agents, III: Polynomially Implementable Agents
 Artificial Intelligence
, 2000
"... In [17], two of the authors have introduced techniques to build agents on top of arbitrary data structures, and to "agentize" new/existing programs. They provided a series of successively more sophisticated semantics for such agent systems, and showed that as these semantics become epis ..."
Abstract

Cited by 26 (7 self)
 Add to MetaCart
(Show Context)
In [17], two of the authors have introduced techniques to build agents on top of arbitrary data structures, and to "agentize" new/existing programs. They provided a series of successively more sophisticated semantics for such agent systems, and showed that as these semantics become epistemically more desirable, a computational price may need to be paid. In this paper, we identify a class of agents that are called weakly regularthis is done by first identifying a fragment of agent programs [17] called weakly regular agent programs (WRAPs for short).
The many forms of hypercomputation
 Applied Mathematics and Computation
, 2006
"... This paper surveys a wide range of proposed hypermachines, examining the resources that they require and the capabilities that they possess. ..."
Abstract

Cited by 17 (0 self)
 Add to MetaCart
(Show Context)
This paper surveys a wide range of proposed hypermachines, examining the resources that they require and the capabilities that they possess.
On the Impact of Forgetting on Learning Machines
 Journal of the ACM
, 1993
"... this paper contributes toward the goal of understanding how a computer can be programmed to learn by isolating features of incremental learning algorithms that theoretically enhance their learning potential. In particular, we examine the effects of imposing a limit on the amount of information that ..."
Abstract

Cited by 13 (4 self)
 Add to MetaCart
(Show Context)
this paper contributes toward the goal of understanding how a computer can be programmed to learn by isolating features of incremental learning algorithms that theoretically enhance their learning potential. In particular, we examine the effects of imposing a limit on the amount of information that learning algorithm can hold in its memory as it attempts to This work was facilitated by an international agreement under NSF Grant 9119540.
Decidability and universality in symbolic dynamical systems
 Fund. Inform
"... Abstract. Many different definitions of computational universality for various types of dynamical systems have flourished since Turing’s work. We propose a general definition of universality that applies to arbitrary discrete time symbolic dynamical systems. Universality of a system is defined as un ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
(Show Context)
Abstract. Many different definitions of computational universality for various types of dynamical systems have flourished since Turing’s work. We propose a general definition of universality that applies to arbitrary discrete time symbolic dynamical systems. Universality of a system is defined as undecidability of a modelchecking problem. For Turing machines, counter machines and tag systems, our definition coincides with the classical one. It yields, however, a new definition for cellular automata and subshifts. Our definition is robust with respect to initial condition, which is a desirable feature for physical realizability. We derive necessary conditions for undecidability and universality. For instance, a universal system must have a sensitive point and a proper subsystem. We conjecture that universal systems have infinite number of subsystems. We also discuss the thesis according to which computation should occur at the ‘edge of chaos ’ and we exhibit a universal chaotic system. 1.
How much can analog and hybrid systems be proved (super)Turing
 Applied Mathematics and Computation
, 2006
"... Church thesis and its variants say roughly that all reasonable models of computation do not have more power than Turing Machines. In a contrapositive way, they say that any model with superTuring power must have something unreasonable. Our aim is to discuss how much theoretical computer science can ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
(Show Context)
Church thesis and its variants say roughly that all reasonable models of computation do not have more power than Turing Machines. In a contrapositive way, they say that any model with superTuring power must have something unreasonable. Our aim is to discuss how much theoretical computer science can quantify this, by considering several classes of continuous time dynamical systems, and by studying how much they can be proved Turing or superTuring. 1
The Π0 2Completeness of Most of the Properties of Rewriting Systems You Care About (and Productivity)
"... Abstract. Most of the standard pleasant properties of term rewriting systems are undecidable; to wit: local confluence, confluence, normalization, termination, and completeness. Mere undecidability is insufficient to rule out a number of possibly useful properties: For instance, if the set of normal ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
Abstract. Most of the standard pleasant properties of term rewriting systems are undecidable; to wit: local confluence, confluence, normalization, termination, and completeness. Mere undecidability is insufficient to rule out a number of possibly useful properties: For instance, if the set of normalizing term rewriting systems were recursively enumerable, there would be a program yielding “yes ” in finite time if applied to any normalizing term rewriting system. The contribution of this paper is to show (the uniform version of) each member of the list of properties above (as well as the property of being a productive specification of a stream) complete for the class Π 0 2. Thus, there is neither a program that can enumerate the set of rewriting systems enjoying any one of the properties, nor is there a program enumerating the set of systems that do not. For normalization and termination we show both the ordinary version and the ground versions (where rules may contain variables, but only