Results 1 
7 of
7
Combining effects: sum and tensor
"... We seek a unified account of modularity for computational effects. We begin by reformulating Moggi’s monadic paradigm for modelling computational effects using the notion of enriched Lawvere theory, together with its relationship with strong monads; this emphasises the importance of the operations ..."
Abstract

Cited by 29 (4 self)
 Add to MetaCart
We seek a unified account of modularity for computational effects. We begin by reformulating Moggi’s monadic paradigm for modelling computational effects using the notion of enriched Lawvere theory, together with its relationship with strong monads; this emphasises the importance of the operations that produce the effects. Effects qua theories are then combined by appropriate bifunctors on the category of theories. We give a theory for the sum of computational effects, which in particular yields Moggi’s exceptions monad transformer and an interactive input/output monad transformer. We further give a theory of the commutative combination of effects, their tensor, which yields Moggi’s sideeffects monad transformer. Finally we give a theory of operation transformers, for redefining operations when adding new effects; we derive explicit forms for the operation transformers associated to the above monad transformers.
Recursive coalgebras from comonads
 Inform. and Comput
, 2006
"... The concept of recursive coalgebra of a functor was introduced in the 1970s by Osius in his work on categorical set theory to discuss the relationship between wellfounded induction and recursively specified functions. In this paper, we motivate the use of recursive coalgebras as a paradigm of struct ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
The concept of recursive coalgebra of a functor was introduced in the 1970s by Osius in his work on categorical set theory to discuss the relationship between wellfounded induction and recursively specified functions. In this paper, we motivate the use of recursive coalgebras as a paradigm of structured recursion in programming semantics, list some basic facts about recursive coalgebras and, centrally, give new conditions for the recursiveness of a coalgebra based on comonads, comonadcoalgebras and distributive laws of functors over comonads. We also present an alternative construction using countable products instead of cofree comonads.
Coinduction for Exact Real Number Computation
, 2007
"... This paper studies coinductive representations of real numbers by signed digit streams and fast Cauchy sequences. It is shown how the associated coinductive principle can be used to give straightforward and easily implementable proofs of the equivalence of the two representations as well as the corr ..."
Abstract

Cited by 5 (4 self)
 Add to MetaCart
This paper studies coinductive representations of real numbers by signed digit streams and fast Cauchy sequences. It is shown how the associated coinductive principle can be used to give straightforward and easily implementable proofs of the equivalence of the two representations as well as the correctness of various corecursive exact real number algorithms. The basic framework is the classical theory of coinductive sets as greatest fixed points of monotone operators and hence is different from (though related to) the type theoretic approach by Ciaffaglione and Gianantonio. Key words: Exact real number computation, coinduction, corecursion, signed digit streams. 1
Categories and Types for Axiomatic Domain Theory
, 2003
"... Domain Theory provides a denotational semantics for programming languages and calculi containing fixed point combinators and other socalled paradoxical combinators. This dissertation presents results in the category theory and type theory of Axiomatic Domain Theory. Prompted by the adjunctions of D ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Domain Theory provides a denotational semantics for programming languages and calculi containing fixed point combinators and other socalled paradoxical combinators. This dissertation presents results in the category theory and type theory of Axiomatic Domain Theory. Prompted by the adjunctions of Domain Theory, we extend Benton’s linear/nonlinear dualsequent calculus to include recursive linear types and define a class of models by adding Freyd’s notion of algebraic compactness to the monoidal adjunctions that model Benton’s calculus. We observe that algebraic compactness is better behaved in the context of categories with structural actions than in the usual context of enriched categories. We establish a theory of structural algebraic compactness that allows us to describe our models without reference to enrichment. We develop a 2categorical perspective on structural actions, including a presentation of monoidal categories that leads directly to Kelly’s reduced coherence conditions. We observe that Benton’s adjoint type constructors can be treated individually, semantically as well as syntactically, using free representations of distributors. We type various of fixed point combinators using recursive types and function types, which
Coinductive Proofs for Basic Real Computation Tie Hou
"... Abstract. We describe two representations for real numbers, signed digit streams and Cauchy sequences. We give coinductive proofs for the correctness of functions converting between these two representations to show the adequacy of signed digit stream representation. We also show a coinductive proof ..."
Abstract
 Add to MetaCart
Abstract. We describe two representations for real numbers, signed digit streams and Cauchy sequences. We give coinductive proofs for the correctness of functions converting between these two representations to show the adequacy of signed digit stream representation. We also show a coinductive proof for the correctness of a corecursive program for the average function with regard to the signed digit stream representation. We implemented this proof in the interactive proof system Minlog. Thus, reliable, corecursive functions for real computation can be guaranteed, which is very helpful in formal software development for real numbers.
Coalgebraic Representation Theory of Fractals (Extended Abstract)
"... We develop a representation theory in which a point of a fractal specified by metric means (by a variant of an iterated function system, IFS) is represented by a suitable equivalence class of infinite streams of symbols. The framework is categorical: symbolic representatives carry a final coalgebra; ..."
Abstract
 Add to MetaCart
We develop a representation theory in which a point of a fractal specified by metric means (by a variant of an iterated function system, IFS) is represented by a suitable equivalence class of infinite streams of symbols. The framework is categorical: symbolic representatives carry a final coalgebra; an IFSlike metric specification of a fractal is an algebra for the same functor. Relating the two there canonically arises a representation map, much like in America and Rutten’s use of metric enrichment in denotational semantics. A distinctive feature of our framework is that the canonical representation map is bijective. In the technical development, gluing of shapes in a fractal specification is a major challenge. On the metric side we introduce the notion of injective IFS to be used in place of conventional IFSs. On the symbolic side we employ Leinster’s presheaf framework that uniformly addresses necessary identification of streams—such as.0111... =.1000... in the binary expansion of real numbers. Our leading example is the unit interval I = [0, 1].
Author manuscript, published in "Science of Computer Programming (2009)" DOI: 10.1016/j.scico.2007.09.002 Proofs of randomized algorithms in Coq
, 2009
"... Randomized algorithms are widely used for finding efficiently approximated solutions to complex problems, for instance primality testing and for obtaining good average behavior. Proving properties of such algorithms requires subtle reasoning both on algorithmic and probabilistic aspects of programs. ..."
Abstract
 Add to MetaCart
Randomized algorithms are widely used for finding efficiently approximated solutions to complex problems, for instance primality testing and for obtaining good average behavior. Proving properties of such algorithms requires subtle reasoning both on algorithmic and probabilistic aspects of programs. Thus, providing tools for the mechanization of reasoning is an important issue. This paper presents a new method for proving properties of randomized algorithms in a proof assistant based on higherorder logic. It is based on the monadic interpretation of randomized programs as probabilistic distributions (Giry, 1982; Ramsey and Pfeffer, 2002). It does not require the definition of an operational semantics for the language nor the development of a complex formalization of measure theory. Instead it uses functional and algebraic properties of unit interval. Using this model, we show the validity of general rules for estimating the probability for a randomized algorithm to satisfy specified properties. This approach addresses only discrete distributions and gives rules for analysing general recursive functions. We apply this theory to the formal proof of a program implementing a Bernoulli distribution from a coin flip and to the (partial) termination of several programs. All the theories and results presented in this paper have been fully formalized and proved in the Coq proof assistant. Key words: randomized algorithms, proof of partial and total correctness, functional language, axiomatic semantics, probability framing, callbyvalue, monadic interpretation