Results 1 
2 of
2
A powerdomain construction
 SIAM J. of Computing
, 1976
"... Abstract. We develop a powerdomain construction, [.], which is analogous to the powerset construction and also fits in with the usual sum, product and exponentiation constructions on domains. The desire for such a construction arises when considering programming languages with nondeterministic featu ..."
Abstract

Cited by 210 (20 self)
 Add to MetaCart
Abstract. We develop a powerdomain construction, [.], which is analogous to the powerset construction and also fits in with the usual sum, product and exponentiation constructions on domains. The desire for such a construction arises when considering programming languages with nondeterministic features or parallel features treated in a nondeterministic way. We hope to achieve a natural, fully abstract semantics in which such equivalences as (pparq)=(qparp) hold. The domain (D Truthvalues) is not the right one, and instead we take the (finitely) generable subsets of D. When D is discrete they are ordered in an elementwise fashion. In the general case they are given the coarsest ordering consistent, in an appropriate sense, with the ordering given in the discrete case. We then find a restricted class of algebraic inductive partial orders which is closed under [. as well as the sum, product and exponentiation constructions. This class permits the solution of recursive domain equations, and we give some illustrative semantics using 5[.]. It remains to be seen if our powerdomain construction does give rise to fully abstract semantics, although such natural equivalences as the above do hold. The major deficiency is the lack of a convincing treatment of the fair parallel construct. 1. Introduction. When one follows the ScottStrachey approach to the
The Mathematical Import Of Zermelo's WellOrdering Theorem
 Bull. Symbolic Logic
, 1997
"... this paper, the seminal results of set theory are woven together in terms of a unifying mathematical motif, one whose transmutations serve to illuminate the historical development of the subject. The motif is foreshadowed in Cantor's diagonal proof, and emerges in the interstices of the inclusion vs ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
this paper, the seminal results of set theory are woven together in terms of a unifying mathematical motif, one whose transmutations serve to illuminate the historical development of the subject. The motif is foreshadowed in Cantor's diagonal proof, and emerges in the interstices of the inclusion vs. membership distinction, a distinction only clarified at the turn of this century, remarkable though this may seem. Russell runs with this distinction, but is quickly caught on the horns of his wellknown paradox, an early expression of our motif. The motif becomes fully manifest through the study of functions f :