Results 1 
5 of
5
Gödel's Theorem and Information
, 1982
"... Gödel's theorem may be demonstrated using arguments having an informationtheoretic flavor. In such an approach it is possible to argue that if a theorem contains more information than a given set of axioms, then it is impossible for the theorem to be derived from the axioms. In contrast with the tr ..."
Abstract

Cited by 52 (6 self)
 Add to MetaCart
Gödel's theorem may be demonstrated using arguments having an informationtheoretic flavor. In such an approach it is possible to argue that if a theorem contains more information than a given set of axioms, then it is impossible for the theorem to be derived from the axioms. In contrast with the traditional proof based on the paradox of the liar, this new viewpoint suggests that the incompleteness phenomenon discovered by Gödel is natural and widespread rather than pathological and unusual.
Informationtheoretic Limitations of Formal Systems
 JOURNAL OF THE ACM
, 1974
"... An attempt is made to apply informationtheoretic computational complexity to metamathematics. The paper studies the number of bits of instructions that must be a given to a computer for it to perform finite and infinite tasks, and also the amount of time that it takes the computer to perform these ..."
Abstract

Cited by 45 (7 self)
 Add to MetaCart
An attempt is made to apply informationtheoretic computational complexity to metamathematics. The paper studies the number of bits of instructions that must be a given to a computer for it to perform finite and infinite tasks, and also the amount of time that it takes the computer to perform these tasks. This is applied to measuring the difficulty of proving a given set of theorems, in terms of the number of bits of axioms that are assumed, and the size of the proofs needed to deduce the theorems from the axioms.
Gulf
, 2000
"... Albert Einstein, one of the greatest scientists of all time, described the “gulf ” that logically separates the concrete world of hard objects on the one hand from the abstract world of ideas on the other. He wrote: We have the habit of combining certain concepts and conceptual relations (propositio ..."
Abstract
 Add to MetaCart
Albert Einstein, one of the greatest scientists of all time, described the “gulf ” that logically separates the concrete world of hard objects on the one hand from the abstract world of ideas on the other. He wrote: We have the habit of combining certain concepts and conceptual relations (propositions) so definitely with certain sense experiences that we do not become conscious of the gulf—logically unbridgeable— which separates the world of sensory experiences from the world of concepts and propositions (1944, p. 289). Einstein’s “gulf ” can be pictured as shown in figure 1.
On the Limitations of Biological Knowledge
"... Abstract: Scientific knowledge is grounded in a particular epistemology and, owing to the requirements of that epistemology, possesses limitations. Some limitations are intrinsic, in the sense that they depend inherently on the nature of scientific knowledge; others are contingent, depending on the ..."
Abstract
 Add to MetaCart
Abstract: Scientific knowledge is grounded in a particular epistemology and, owing to the requirements of that epistemology, possesses limitations. Some limitations are intrinsic, in the sense that they depend inherently on the nature of scientific knowledge; others are contingent, depending on the present state of knowledge, including technology. Understanding limitations facilitates scientific research because one can then recognize when one is confronted by a limitation, as opposed to simply being unable to solve a problem within the existing bounds of possibility. In the hope that the role of limiting factors can be brought more clearly into focus and discussed, we consider several sources of limitation as they apply to biological knowledge: mathematical complexity, experimental constraints, validation, knowledge discovery, and human intellectual capacity.