Results 1  10
of
57
Almost everywhere domination
 Journal of Symbolic Logic
"... Abstract. A Turing degree a is said to be almost everywhere dominating if, for almost all X 2 2ù with respect to the Òfair coinÓ probability measure on 2ù, and for all g: ù! ù Turing reducible to X, there exists f: ù! ù of Turing degree a which dominates g. We study the problem of characterizing the ..."
Abstract

Cited by 37 (16 self)
 Add to MetaCart
(Show Context)
Abstract. A Turing degree a is said to be almost everywhere dominating if, for almost all X 2 2ù with respect to the Òfair coinÓ probability measure on 2ù, and for all g: ù! ù Turing reducible to X, there exists f: ù! ù of Turing degree a which dominates g. We study the problem of characterizing the almost everywhere dominating Turing degrees and other, similarly deÞned classes of Turing degrees. We relate this problem to some questions in the reverse mathematics of measure theory. x1. Introduction. In this paper ù denotes the set of natural numbers, 2ù denotes the set of total functions from ù to f0; 1g, and ùù denotes the set of total functions from ù to ù. The Òfair coinÓ probability measure ì on 2ù is given by
Automorphisms of the lattice of recursively enumerable sets: Orbits, Adv
"... JSTOR is a notforprofit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JS ..."
Abstract

Cited by 35 (15 self)
 Add to MetaCart
JSTOR is a notforprofit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to
Uniform almost everywhere domination
 Journal of Symbolic Logic
, 2006
"... ABSTRACT. We explore the interaction between Lebesgue measure and dominating functions. We show, via both a priority construction and a forcing construction, that there is a function of incomplete degree that dominates almost all degrees. This answers a question of Dobrinen and Simpson, who showed t ..."
Abstract

Cited by 29 (1 self)
 Add to MetaCart
(Show Context)
ABSTRACT. We explore the interaction between Lebesgue measure and dominating functions. We show, via both a priority construction and a forcing construction, that there is a function of incomplete degree that dominates almost all degrees. This answers a question of Dobrinen and Simpson, who showed that such functions are related to the prooftheoretic strength of the regularity of Lebesgue measure for G δ sets. Our constructions essentially settle the reverse mathematical classification of this principle. 1.
Lowness notions, measure and domination
, 2008
"... Abstract. We show that positive measure domination implies uniform almost everywhere domination and that this proof translates into a proof in the subsystem WWKL0 (but not in RCA0) of the equivalence of various Lebesgue measure regularity statements introduced by Dobrinen and Simpson. This work also ..."
Abstract

Cited by 27 (5 self)
 Add to MetaCart
(Show Context)
Abstract. We show that positive measure domination implies uniform almost everywhere domination and that this proof translates into a proof in the subsystem WWKL0 (but not in RCA0) of the equivalence of various Lebesgue measure regularity statements introduced by Dobrinen and Simpson. This work also allows us to prove that low for weak 2randomness is the same as low for MartinLöf randomness (a result independently obtained by Nies). Using the same technique, we show that ≤LR implies ≤LK, generalizing the fact that low for MartinLöf randomness implies low for K. 1.
On the Strength of Ramsey's Theorem
 Notre Dame J. Formal Logic
, 1995
"... this paper we study the logical strength of Ramsey's Theorem (1930), especially of Ramsey's Theorem for partitions of pairs into two pieces. ..."
Abstract

Cited by 22 (0 self)
 Add to MetaCart
this paper we study the logical strength of Ramsey's Theorem (1930), especially of Ramsey's Theorem for partitions of pairs into two pieces.
Automorphisms of the lattice of Π 0 1 classes: perfect thin classes and anc degrees
 Trans. Amer. Math. Soc
"... Abstract. Π0 1 classes are important to the logical analysis of many parts of mathematics. The Π0 1 classes form a lattice. As with the lattice of computably enumerable sets, it is natural to explore the relationship between this lattice and the Turing degrees. We focus on an analog of maximality, o ..."
Abstract

Cited by 17 (6 self)
 Add to MetaCart
(Show Context)
Abstract. Π0 1 classes are important to the logical analysis of many parts of mathematics. The Π0 1 classes form a lattice. As with the lattice of computably enumerable sets, it is natural to explore the relationship between this lattice and the Turing degrees. We focus on an analog of maximality, or more precisely, hyperhypersimplicity, namely the notion of a thin class. We prove a number of results relating automorphisms, invariance, and thin classes. Our main results are an analog of Martin’s work on hyperhypersimple sets and high degrees, using thin classes and anc degrees, and an analog of Soare’s work demonstrating that maximal sets form an orbit. In particular, we show that the collection of perfect thin classes (a notion which is definable in the lattice of Π0 1 classes) forms an orbit in the lattice of Π01 classes; and a degree is anc iff it contains a perfect thin class. Hence the class of anc degrees is an invariant class for the lattice of Π0 1 classes. We remark that the automorphism result is proven via a ∆0 3 automorphism, and demonstrate that this complexity is necessary. 1.
Prediction and Dimension
 Journal of Computer and System Sciences
, 2002
"... Given a set X of sequences over a nite alphabet, we investigate the following three quantities. (i) The feasible predictability of X is the highest success ratio that a polynomialtime randomized predictor can achieve on all sequences in X. ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
(Show Context)
Given a set X of sequences over a nite alphabet, we investigate the following three quantities. (i) The feasible predictability of X is the highest success ratio that a polynomialtime randomized predictor can achieve on all sequences in X.
Computational depth and reducibility
 Theoretical Computer Science
, 1994
"... This paper reviews and investigates Bennett's notions of strong and weak computational depth (also called logical depth) for in nite binary sequences. Roughly, an in nite binary sequence x is de ned to be weakly useful if every element of a nonnegligible set of decidable sequences is reducible ..."
Abstract

Cited by 13 (2 self)
 Add to MetaCart
(Show Context)
This paper reviews and investigates Bennett's notions of strong and weak computational depth (also called logical depth) for in nite binary sequences. Roughly, an in nite binary sequence x is de ned to be weakly useful if every element of a nonnegligible set of decidable sequences is reducible to x in recursively bounded time. It is shown that every weakly useful sequence is strongly deep. This result (which generalizes Bennett's observation that the halting problem is strongly deep) implies that every high Turing degree contains strongly deep sequences. It is also shown that, in the sense of Baire category, almost
Codable Sets and Orbits of Computably Enumerable Sets
 J. Symbolic Logic
, 1995
"... A set X of nonnegative integers is computably enumerable (c.e.), also called recursively enumerable (r.e.), if there is a computable method to list its elements. Let E denote the structure of the computably enumerable sets under inclusion, E = (fW e g e2! ; `). We previously exhibited a first order ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
A set X of nonnegative integers is computably enumerable (c.e.), also called recursively enumerable (r.e.), if there is a computable method to list its elements. Let E denote the structure of the computably enumerable sets under inclusion, E = (fW e g e2! ; `). We previously exhibited a first order Edefinable property Q(X) such that Q(X) guarantees that X is not Turing complete (i.e., does not code complete information about c.e. sets). Here we show first that Q(X) implies that X has a certain "slowness " property whereby the elements must enter X slowly (under a certain precise complexity measure of speed of computation) even though X may have high information content. Second we prove that every X with this slowness property is computable in some member of any nontrivial orbit, namely for any noncomputable A 2 E there exists B in the orbit of A such that X T B under relative Turing computability ( T ). We produce B using the \Delta 0 3 automorphism method we introduced earli...