Results 1  10
of
38
Engineering and economic applications of complementarity problems
 SIAM Review
, 1997
"... Abstract. This paper gives an extensive documentation of applications of finitedimensional nonlinear complementarity problems in engineering and equilibrium modeling. For most applications, we describe the problem briefly, state the defining equations of the model, and give functional expressions f ..."
Abstract

Cited by 127 (24 self)
 Add to MetaCart
Abstract. This paper gives an extensive documentation of applications of finitedimensional nonlinear complementarity problems in engineering and equilibrium modeling. For most applications, we describe the problem briefly, state the defining equations of the model, and give functional expressions for the complementarity formulations. The goal of this documentation is threefold: (i) to summarize the essential applications of the nonlinear complementarity problem known to date, (ii) to provide a basis for the continued research on the nonlinear complementarity problem, and (iii) to supply a broad collection of realistic complementarity problems for use in algorithmic experimentation and other studies.
A Smoothing Method For Mathematical Programs With Equilibrium Constraints
, 1996
"... The mathematical program with equilibrium constraints (MPEC) is an optimization problem with variational inequality constraints. MPEC problems include bilevel programming problems as a particular case and have a wide range of applications. MPEC problems with strongly monotone variational inequalitie ..."
Abstract

Cited by 52 (5 self)
 Add to MetaCart
The mathematical program with equilibrium constraints (MPEC) is an optimization problem with variational inequality constraints. MPEC problems include bilevel programming problems as a particular case and have a wide range of applications. MPEC problems with strongly monotone variational inequalities are considered in this paper. They are transformed into an equivalent onelevel nonsmooth optimization problem. Then, a sequence of smooth, regular problems that progressively approximate the nonsmooth problem and that can be solved by standard available software for constrained optimization is introduced. It is shown that the solutions (stationary points) of the approximate problems converge to a solution (stationary point) of the original MPEC problem. Numerical results showing viability of the approach are reported.
Algorithms For Complementarity Problems And Generalized Equations
, 1995
"... Recent improvements in the capabilities of complementarity solvers have led to an increased interest in using the complementarity problem framework to address practical problems arising in mathematical programming, economics, engineering, and the sciences. As a result, increasingly more difficult pr ..."
Abstract

Cited by 41 (5 self)
 Add to MetaCart
Recent improvements in the capabilities of complementarity solvers have led to an increased interest in using the complementarity problem framework to address practical problems arising in mathematical programming, economics, engineering, and the sciences. As a result, increasingly more difficult problems are being proposed that exceed the capabilities of even the best algorithms currently available. There is, therefore, an immediate need to improve the capabilities of complementarity solvers. This thesis addresses this need in two significant ways. First, the thesis proposes and develops a proximal perturbation strategy that enhances the robustness of Newtonbased complementarity solvers. This strategy enables algorithms to reliably find solutions even for problems whose natural merit functions have strict local minima that are not solutions. Based upon this strategy, three new algorithms are proposed for solving nonlinear mixed complementarity problems that represent a significant improvement in robustness over previous algorithms. These algorithms have local Qquadratic convergence behavior, yet depend only on a pseudomonotonicity assumption to achieve global convergence from arbitrary starting points. Using the MCPLIB and GAMSLIB test libraries, we perform extensive computational tests that demonstrate the effectiveness of these algorithms on realistic problems. Second, the thesis extends some previously existing algorithms to solve more general problem classes. Specifically, the NE/SQP method of Pang & Gabriel (1993), the semismooth equations approach of De Luca, Facchinei & Kanz...
A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities
, 2000
"... ..."
Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities
 Mathematics of Computation
, 1998
"... Abstract. The smoothing Newton method for solving a system of nonsmooth equations F (x) = 0, which may arise from the nonlinear complementarity problem, the variational inequality problem or other problems, can be regarded as a variant of the smoothing method. At the kth step, the nonsmooth functio ..."
Abstract

Cited by 34 (16 self)
 Add to MetaCart
Abstract. The smoothing Newton method for solving a system of nonsmooth equations F (x) = 0, which may arise from the nonlinear complementarity problem, the variational inequality problem or other problems, can be regarded as a variant of the smoothing method. At the kth step, the nonsmooth function F is approximated by a smooth function f(·,εk), and the derivative of f(·,εk) at x k is used as the Newton iterative matrix. The merits of smoothing methods and smoothing Newton methods are global convergence and convenience in handling. In this paper, we show that the smoothing Newton method is also superlinearly convergent if F is semismooth at the solution and f satisfies a Jacobian consistency property. We show that most common smooth functions, such as the GabrielMoré function, have this property. As an application, we show that for box constrained variational inequalities if the involved function is P –uniform, the iteration sequence generated by the smoothing Newton method will converge to the unique solution of the problem globally and superlinearly (quadratically). 1.
Smoothing Methods and Semismooth Methods for Nondifferentiable Operator Equations
 SIAM J. Numer. Anal
, 1999
"... . We consider superlinearly convergent analogues of Newton methods for nondifferentiable operator equations in function spaces. The superlinear convergence analysis of semismooth methods for nondifferentiable equations described by defining a locally Lipschitzian operator in R n is based on Radema ..."
Abstract

Cited by 25 (1 self)
 Add to MetaCart
. We consider superlinearly convergent analogues of Newton methods for nondifferentiable operator equations in function spaces. The superlinear convergence analysis of semismooth methods for nondifferentiable equations described by defining a locally Lipschitzian operator in R n is based on Rademacher's theorem which does not hold in function spaces. We introduce a concept of slant differentiability and use it to study superlinear convergence of smoothing methods and semismooth methods in a unified framework. We show that a function is slantly differentiable at a point if and only if it is Lipschitz continuous at that point. An application to the Dirichlet problems for a simple class of nonsmooth elliptic partial differential equations is discussed. Key words. Smoothing methods, semismooth methods, superlinear convergence, nondifferentiable operator equation, nonsmooth elliptic partial differential equations. AMS subject classifications. 65J15, 65H10, 65J20. 1. Introduction. This p...
A Global and Local Superlinear ContinuationSmoothing Method for ... and Monotone NCP
 SIAM J. Optim
, 1997
"... We propose a continuation method for a class of nonlinear complementarity problems(NCPs), including the NCP with a P 0 and R 0 function and the monotone NCP with a feasible interior point. The continuation method is based on a class of ChenMangasarian smooth functions. Unlike many existing continua ..."
Abstract

Cited by 24 (6 self)
 Add to MetaCart
We propose a continuation method for a class of nonlinear complementarity problems(NCPs), including the NCP with a P 0 and R 0 function and the monotone NCP with a feasible interior point. The continuation method is based on a class of ChenMangasarian smooth functions. Unlike many existing continuation methods, the method follows the noninterior smoothing paths, and as a result, an initial point can be easily constructed. In addition, we introduce a procedure to dynamically update the neighborhoods associated with the smoothing paths, so that the algorithm is both globally convergent and locally superlinearly convergent under suitable assumptions. Finally, a hybrid continuationsmoothing method is proposed and is shown to have the same convergence properties under weaker conditions. 1 Introduction Let F : R n ! R n be a continuously differentiable function. The nonlinear complementarity problem, denoted by NCP(F ), is to find a vector (x; y) 2 R n \Theta R n such that F (x)...
Inexact Newton Methods for Solving Nonsmooth Equations
 Journal of Computational and Applied Mathematics
, 1999
"... This paper investigates inexact Newton methods for solving systems of nonsmooth equations. We define two inexact Newton methods for locally Lipschitz functions and we prove local (linear and superlinear) convergence results under the assumptions of semismoothness and BDregularity at the solution. W ..."
Abstract

Cited by 24 (9 self)
 Add to MetaCart
This paper investigates inexact Newton methods for solving systems of nonsmooth equations. We define two inexact Newton methods for locally Lipschitz functions and we prove local (linear and superlinear) convergence results under the assumptions of semismoothness and BDregularity at the solution. We introduce a globally convergent inexact iteration function based method. We discuss implementations and we give some numerical examples.
On HomotopySmoothing Methods for Variational Inequalities
"... A variational inequality problem with a mapping g : ! n ! ! n and lower and upper bounds on variables can be reformulated as a system of nonsmooth equations F (x) = 0 in ! n . Recently, several homotopy methods, such as interiorpoint and smoothing methods, have been employed to solve the prob ..."
Abstract

Cited by 23 (5 self)
 Add to MetaCart
A variational inequality problem with a mapping g : ! n ! ! n and lower and upper bounds on variables can be reformulated as a system of nonsmooth equations F (x) = 0 in ! n . Recently, several homotopy methods, such as interiorpoint and smoothing methods, have been employed to solve the problem. All of these methods use parametric functions and construct perturbed equations to approximate the problem. The solution to the perturbed system constitutes a smooth trajectory leading to the solution of the original variational inequality problem. The methods generate iterates to follow the trajectory. Among these methods ChenMangasarian and GabrielMor'e proposed a class of smooth functions to approximate F . In this paper, we study several properties of the trajectory defined by solutions of these smooth systems. We propose a homotopysmoothing method for solving the variational inequality problem, and show that the method converges globally and superlinearly under mild conditions. ...
A Global Linear and Local Quadratic Continuation Smoothing Method for Variational Inequalities with Box Constraints
, 1997
"... In this paper, we propose a continuation method for box constrained variational inequality problems. The continuation method is based on the class of GabrielMor'e smooth functions and has the following attractive features: It can start from any point; It has a simple and natural neighborhood defini ..."
Abstract

Cited by 19 (3 self)
 Add to MetaCart
In this paper, we propose a continuation method for box constrained variational inequality problems. The continuation method is based on the class of GabrielMor'e smooth functions and has the following attractive features: It can start from any point; It has a simple and natural neighborhood definition; It solves only one approximate Newton equation at each iteration; It converges globally linearly and locally quadratically under nondegeneracy assumption at the solution point and other suitable assumptions. A hybrid method is also presented, which is shown to preserve the above convergence properties without the nondegeneracy assumption at the solution point. In particular, the hybrid method converges finitely for affine problems. 1 Introduction Let F : R n ! R n be a continuously differentiable function. Let l 2 fR [ \Gamma1g n and u 2 fR [1g n such that l ! u. The variational inequality problem (VIP) with box constraints, denoted by VIP(l; u; F ), is to find x 2 [l; u] such...