Results 1  10
of
476
An algorithm for drawing general undirected graphs
 Information Processing Letters
, 1989
"... Graphs (networks) are very common data structures which are handled in computers. Diagrams are widely used to represent the graph structures visually in many information systems. In order to automatically draw the diagrams which are, for example, state graphs, dataflow graphs, Petri nets, and entit ..."
Abstract

Cited by 698 (2 self)
 Add to MetaCart
(Show Context)
Graphs (networks) are very common data structures which are handled in computers. Diagrams are widely used to represent the graph structures visually in many information systems. In order to automatically draw the diagrams which are, for example, state graphs, dataflow graphs, Petri nets, and entityrelationship diagrams, basic graph drawing algorithms are required.
Parametrization and smooth approximation of surface triangulations
 COMPUTER AIDED GEOMETRIC DESIGN
, 1997
"... A method based on graph theory is investigated for creating global parametrizations for surface triangulations for the purpose of smooth surface fitting. The parametrizations, which are planar triangulations, are the solutions of linear systems based on convex combinations. ..."
Abstract

Cited by 290 (10 self)
 Add to MetaCart
(Show Context)
A method based on graph theory is investigated for creating global parametrizations for surface triangulations for the purpose of smooth surface fitting. The parametrizations, which are planar triangulations, are the solutions of linear systems based on convex combinations.
Efficient planarity testing
 J. ASSOC. COMPUT. MACH
, 1974
"... This paper describes an efficient algorithm to determine whether an arbitrary graph G can be embedded in the plane. The algorithm may be viewed as an iterative version of a method originally proposed by Auslander and Parter and correctly formulated by Goldstein. The algorithm uses depthfirst sear ..."
Abstract

Cited by 278 (5 self)
 Add to MetaCart
This paper describes an efficient algorithm to determine whether an arbitrary graph G can be embedded in the plane. The algorithm may be viewed as an iterative version of a method originally proposed by Auslander and Parter and correctly formulated by Goldstein. The algorithm uses depthfirst search and has O(V) time and space bounds, where V is the number of vertices in G. An ALGOS implementation of the algorithm successfully tested graphs with as many as 900 vertices in less than 12 seconds.
Surface Parameterization: a Tutorial and Survey
 In Advances in Multiresolution for Geometric Modelling, Mathematics and Visualization
, 2005
"... Summary. This paper provides a tutorial and survey of methods for parameterizing surfaces with a view to applications in geometric modelling and computer graphics. We gather various concepts from differential geometry which are relevant to surface mapping and use them to understand the strengths and ..."
Abstract

Cited by 239 (7 self)
 Add to MetaCart
(Show Context)
Summary. This paper provides a tutorial and survey of methods for parameterizing surfaces with a view to applications in geometric modelling and computer graphics. We gather various concepts from differential geometry which are relevant to surface mapping and use them to understand the strengths and weaknesses of the many methods for parameterizing piecewise linear surfaces and their relationship to one another. 1
The laplacian spectrum of graphs”.
 In Graph Theory, Combinatorics,
, 1991
"... Abstract. The paper is essentially a survey of known results about the spectrum of the Laplacian matrix of graphs with special emphasis on the second smallest Laplacian eigenvalue λ 2 and its relation to numerous graph invariants, including connectivity, expanding properties, isoperimetric number, ..."
Abstract

Cited by 228 (2 self)
 Add to MetaCart
(Show Context)
Abstract. The paper is essentially a survey of known results about the spectrum of the Laplacian matrix of graphs with special emphasis on the second smallest Laplacian eigenvalue λ 2 and its relation to numerous graph invariants, including connectivity, expanding properties, isoperimetric number, maximum cut, independence number, genus, diameter, mean distance, and bandwidthtype parameters of a graph. Some new results and generalizations are added.
Mean value coordinates
 COMPUTER AIDED GEOMETRIC DESIGN
, 2003
"... We derive a generalization of barycentric coordinates which allows a vertex in a planar triangulation to be expressed as a convex combination of its neighbouring vertices. The coordinates are motivated by the Mean Value Theorem for harmonic functions and can be used to simplify and improve methods ..."
Abstract

Cited by 226 (9 self)
 Add to MetaCart
We derive a generalization of barycentric coordinates which allows a vertex in a planar triangulation to be expressed as a convex combination of its neighbouring vertices. The coordinates are motivated by the Mean Value Theorem for harmonic functions and can be used to simplify and improve methods for parameterization and morphing.
Intrinsic Parameterizations of Surface Meshes
, 2002
"... Parameterization of discrete surfaces is a fundamental and widelyused operation in graphics, required, for instance, for texture mapping or remeshing. As 3D data becomes more and more detailed, there is an increased need for fast and robust techniques to automatically compute leastdistorted parame ..."
Abstract

Cited by 207 (16 self)
 Add to MetaCart
Parameterization of discrete surfaces is a fundamental and widelyused operation in graphics, required, for instance, for texture mapping or remeshing. As 3D data becomes more and more detailed, there is an increased need for fast and robust techniques to automatically compute leastdistorted parameterizations of large meshes. In this paper, we present new theoretical and practical results on the parameterization of triangulated surface patches. Given a few desirable properties such as rotation and translation invariance, we show that the only admissible parameterizations form a twodimensional set and each parameterization in this set can be computed using a simple, sparse, linear system. Since these parameterizations minimize the distortion of different intrinsic measures of the original mesh, we call them Intrinsic Parameterizations. In addition to this partial theoretical analysis, we propose robust, efficient and tunable tools to obtain leastdistorted parameterizations automatically. In particular, we give details on a novel, fast technique to provide an optimal mapping without fixing the boundary positions, thus providing a unique Natural Intrinsic Parameterization. Other techniques based on this parameterization family, designed to ease the rapid design of parameterizations, are also proposed.
Connected rigidity matroids and unique realizations of graphs
, 2003
"... A ddimensional framework is a straight line embedding of a graph G in R d. We shall only consider generic frameworks, in which the coordinates of all the vertices of G are algebraically independent. Two frameworks for G are equivalent if corresponding edges in the two frameworks have the same le ..."
Abstract

Cited by 104 (14 self)
 Add to MetaCart
A ddimensional framework is a straight line embedding of a graph G in R d. We shall only consider generic frameworks, in which the coordinates of all the vertices of G are algebraically independent. Two frameworks for G are equivalent if corresponding edges in the two frameworks have the same length. A framework is a unique realization of G in R d if every equivalent framework can be obtained from it by a rigid congruence of R d. Bruce Hendrickson proved that if G has a unique realization in R d then G is (d + 1)connected and redundantly rigid. He conjectured that every realization of a (d + 1)connected and redundantly rigid graph in R d is unique. This conjecture is true for d = 1 but was disproved by Robert Connelly for d ≥ 3. We resolve the remaining open case by showing that Hendrickson’s conjecture is true for d = 2. As a corollary we deduce that every realization of a 6connected graph as a 2dimensional generic framework is a unique realization. Our proof is based on a new inductive characterization of 3connected graphs whose rigidity matroid is connected.
Multilevel Visualization of Clustered Graphs
, 1997
"... Clustered graphs are graphs with recursive clustering structures over the vertices. This type of structure appears in many systems. Examples include CASE tools, management information systems, VLSI design tools, and reverse engineering systems. Existing layout algorithms represent the clustering str ..."
Abstract

Cited by 103 (2 self)
 Add to MetaCart
(Show Context)
Clustered graphs are graphs with recursive clustering structures over the vertices. This type of structure appears in many systems. Examples include CASE tools, management information systems, VLSI design tools, and reverse engineering systems. Existing layout algorithms represent the clustering structure as recursively nested regions in the plane. However, as the structure becomes more and more complex, two dimensional plane representations tend to be insufficient. In this paper, firstly, we describe some two dimensional plane drawing algorithms for clustered graphs; then we show how to extend two dimensional plane drawings to three dimensional multilevel drawings. We consider two conventions: straightline convex drawings and orthogonal rectangular drawings; and we show some examples. 1 Introduction Graph drawing algorithms are widely used in graphical user interfaces of software systems. As the amount of information that we want to visualize becomes larger, we need more structure ...
Separators for spherepackings and nearest neighbor graphs
 J. ACM
, 1997
"... Abstract. A collection of n balls in d dimensions forms a kply system if no point in the space is covered by more than k balls. We show that for every kply system �, there is a sphere S that intersects at most O(k 1/d n 1�1/d) balls of � and divides the remainder of � into two parts: those in the ..."
Abstract

Cited by 100 (8 self)
 Add to MetaCart
Abstract. A collection of n balls in d dimensions forms a kply system if no point in the space is covered by more than k balls. We show that for every kply system �, there is a sphere S that intersects at most O(k 1/d n 1�1/d) balls of � and divides the remainder of � into two parts: those in the interior and those in the exterior of the sphere S, respectively, so that the larger part contains at most (1 � 1/(d � 2))n balls. This bound of O(k 1/d n 1�1/d) is the best possible in both n and k. We also present a simple randomized algorithm to find such a sphere in O(n) time. Our result implies that every knearest neighbor graphs of n points in d dimensions has a separator of size O(k 1/d n 1�1/d). In conjunction with a result of Koebe that every triangulated planar graph is isomorphic to the intersection graph of a diskpacking, our result not only gives a new geometric proof of the planar separator theorem of Lipton and Tarjan, but also generalizes it to higher dimensions. The separator algorithm can be used for point location and geometric divide and conquer in a fixed dimensional space.