Results 1 
4 of
4
Components as processes: An exercise in coalgebraic modeling
 FMOODS’2000  Formal Methods for Open ObjectOriented Distributed Systems
, 2000
"... Abstract Software components, arising, typically, in systems ’ analysis and design, are characterized by a public interface and a private encapsulated state. They persist (and evolve) in time, according to some behavioural patterns. This paper is an exercise in modeling such components as coalgebras ..."
Abstract

Cited by 14 (6 self)
 Add to MetaCart
Abstract Software components, arising, typically, in systems ’ analysis and design, are characterized by a public interface and a private encapsulated state. They persist (and evolve) in time, according to some behavioural patterns. This paper is an exercise in modeling such components as coalgebras for some kinds of endofunctors on ¢¡¤ £ , capturing both (interface) types and behavioural aspects. The construction of component categories, cofibred over the interface space, emerges by generalizing the usual notion of a coalgebra morphism. A collection of composition operators as well as a generic notion of bisimilarity, are discussed.
Towards Merging Recursion and Comonads
, 2000
"... Comonads are mathematical structures that account naturally for effects that derive from the context in which a program is executed. This paper reports ongoing work on the interaction between recursion and comonads. Two applications are shown that naturally lead to versions of a comonadic fold op ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
Comonads are mathematical structures that account naturally for effects that derive from the context in which a program is executed. This paper reports ongoing work on the interaction between recursion and comonads. Two applications are shown that naturally lead to versions of a comonadic fold operator on the product comonad. Both versions capture functions that require extra arguments for their computation and are related with the notion of strong datatype. 1 Introduction One of the main features of recursive operators derivable from datatype definitions is that they impose a structure upon programs which can be exploited for program transformation. Recursive operators structure functional programs according to the data structures they traverse or generate and come equipped with a battery of algebraic laws, also derivable from type definitions, which are used in program calculations [24, 11, 5, 15]. Some of these laws, the socalled fusion laws, are particularly interesting in p...
Towards Merging Recursion and Comonads
, 2000
"... Comonads are mathematical structures that account naturally for effects that derive from the context in which a program is executed. This paper reports ongoing work on the interaction between recursion and comonads. Two applications are shown that naturally lead to versions of a comonadic fold op ..."
Abstract
 Add to MetaCart
Comonads are mathematical structures that account naturally for effects that derive from the context in which a program is executed. This paper reports ongoing work on the interaction between recursion and comonads. Two applications are shown that naturally lead to versions of a comonadic fold operator on the product comonad. Both versions capture functions that require extra arguments for their computation and are related with the notion of strong datatype. 1 Introduction One of the main features of recursive operators derivable from datatype definitions is that they impose a structure upon programs which can be exploited for program transformation. Recursive operators structure functional programs according to the data structures they traverse or generate and come equipped with a battery of algebraic laws, also derivable from type definitions, which are used in program calculations [24, 11, 5, 15]. Some of these laws, the socalled fusion laws, are particularly interesting in p...
Linear functors and fixed points
, 2012
"... In concurrent programming, message passing plays an important role. It is a form of communication where processes communicate via channels by sending and receiving messages. In order to determine the types and the sequencing of messages, protocols are applied on channels. In this thesis, we present ..."
Abstract
 Add to MetaCart
In concurrent programming, message passing plays an important role. It is a form of communication where processes communicate via channels by sending and receiving messages. In order to determine the types and the sequencing of messages, protocols are applied on channels. In this thesis, we present the categorical semantics of special protocols in message passing logic (introduced by Cockett and Pastro) which are built on linear functors as inductive and coinductive datatype. It is shown that the inductive and coinductive datatypes form a linear functor pair when they built on linear functors and the structure of linear functors is obtained from the covariant and contravariant actions of linear actegories.