Results 1  10
of
15
A General Formulation of Simultaneous InductiveRecursive Definitions in Type Theory
 Journal of Symbolic Logic
, 1998
"... The first example of a simultaneous inductiverecursive definition in intuitionistic type theory is MartinLöf's universe à la Tarski. A set U0 of codes for small sets is generated inductively at the same time as a function T0 , which maps a code to the corresponding small set, is defined by recursi ..."
Abstract

Cited by 65 (10 self)
 Add to MetaCart
The first example of a simultaneous inductiverecursive definition in intuitionistic type theory is MartinLöf's universe à la Tarski. A set U0 of codes for small sets is generated inductively at the same time as a function T0 , which maps a code to the corresponding small set, is defined by recursion on the way the elements of U0 are generated. In this paper we argue that there is an underlying general notion of simultaneous inductiverecursive definition which is implicit in MartinLöf's intuitionistic type theory. We extend previously given schematic formulations of inductive definitions in type theory to encompass a general notion of simultaneous inductionrecursion. This enables us to give a unified treatment of several interesting constructions including various universe constructions by Palmgren, Griffor, Rathjen, and Setzer and a constructive version of Aczel's Frege structures. Consistency of a restricted version of the extension is shown by constructing a realisability model ...
Inductive and Coinductive types with Iteration and Recursion
 Proceedings of the 1992 Workshop on Types for Proofs and Programs, Bastad
, 1992
"... We study (extensions of) simply and polymorphically typed lambda calculus from a point of view of how iterative and recursive functions on inductive types are represented. The inductive types can usually be understood as initial algebras in a certain category and then recursion can be defined in ter ..."
Abstract

Cited by 51 (0 self)
 Add to MetaCart
We study (extensions of) simply and polymorphically typed lambda calculus from a point of view of how iterative and recursive functions on inductive types are represented. The inductive types can usually be understood as initial algebras in a certain category and then recursion can be defined in terms of iteration. However, in the syntax we often have only weak initiality, which makes the definition of recursion in terms of iteration inefficient or just impossible. We propose a categorical notion of (primitive) recursion which can easily be added as computation rule to a typed lambda calculus and gives us a clear view on what the dual of recursion, corecursion, on coinductive types is. (The same notion has, independently, been proposed by [Mendler 1991].) We look at how these syntactic notions work out in the simply typed lambda calculus and the polymorphic lambda calculus. It will turn out that in the syntax, recursion can be defined in terms of corecursion and vice versa using polymo...
A finite axiomatization of inductiverecursive definitions
 Typed Lambda Calculi and Applications, volume 1581 of Lecture Notes in Computer Science
, 1999
"... Inductionrecursion is a schema which formalizes the principles for introducing new sets in MartinLöf’s type theory. It states that we may inductively define a set while simultaneously defining a function from this set into an arbitrary type by structural recursion. This extends the notion of an in ..."
Abstract

Cited by 42 (14 self)
 Add to MetaCart
Inductionrecursion is a schema which formalizes the principles for introducing new sets in MartinLöf’s type theory. It states that we may inductively define a set while simultaneously defining a function from this set into an arbitrary type by structural recursion. This extends the notion of an inductively defined set substantially and allows us to introduce universes and higher order universes (but not a Mahlo universe). In this article we give a finite axiomatization of inductiverecursive definitions. We prove consistency by constructing a settheoretic model which makes use of one Mahlo cardinal. 1
On universes in type theory
 191 – 204
, 1998
"... The notion of a universe of types was introduced into constructive type theory by MartinLöf (1975). According to the propositionsastypes principle inherent in ..."
Abstract

Cited by 32 (8 self)
 Add to MetaCart
The notion of a universe of types was introduced into constructive type theory by MartinLöf (1975). According to the propositionsastypes principle inherent in
Inductionrecursion and initial algebras
 Annals of Pure and Applied Logic
, 2003
"... 1 Introduction Inductionrecursion is a powerful definition method in intuitionistic type theory in the sense of Scott ("Constructive Validity") [31] and MartinL"of [17, 18, 19]. The first occurrence of formal inductionrecursion is MartinL"of's definition of a universe `a la T ..."
Abstract

Cited by 28 (11 self)
 Add to MetaCart
1 Introduction Inductionrecursion is a powerful definition method in intuitionistic type theory in the sense of Scott ("Constructive Validity") [31] and MartinL"of [17, 18, 19]. The first occurrence of formal inductionrecursion is MartinL"of's definition of a universe `a la Tarski [19], which consists of a set U
Giving Haskell a Promotion
, 2012
"... Static type systems strive to be richly expressive while still being simple enough for programmers to use. We describe an experiment that enriches Haskell’s kind system with two features promoted from its type system: data types and polymorphism. The new system has a very good powertoweight ratio: ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
Static type systems strive to be richly expressive while still being simple enough for programmers to use. We describe an experiment that enriches Haskell’s kind system with two features promoted from its type system: data types and polymorphism. The new system has a very good powertoweight ratio: it offers a significant improvement in expressiveness, but, by reusing concepts that programmers are already familiar with, the system is easy to understand and implement.
Programming with inductive and coinductive types
, 1992
"... Abstract We look at programming with inductive and coinductive datatypes, which are inspired theoretically by initial algebras and final coalgebras, respectively. A predicative calculus which incorporates these datatypes as primitive constructs is presented. This calculus allows reduction sequence ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
Abstract We look at programming with inductive and coinductive datatypes, which are inspired theoretically by initial algebras and final coalgebras, respectively. A predicative calculus which incorporates these datatypes as primitive constructs is presented. This calculus allows reduction sequences which are significantly more efficient for two dual classes of common programs than do previous calculi using similar primitives. Several techniques for programming in this calculus are illustrated with numerous examples. A short survey of related work is also included.
Ordinals and Interactive Programs
, 2000
"... The work reported in this thesis arises from the old idea, going back to the origins of constructive logic, that a proof is fundamentally a kind of program. If proofs can be ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
The work reported in this thesis arises from the old idea, going back to the origins of constructive logic, that a proof is fundamentally a kind of program. If proofs can be
When is a type refinement an inductive type
 In FOSSACS, volume 6604 of Lecture Notes in Computer Science
, 2011
"... Abstract. Dependently typed programming languages allow sophisticated properties of data to be expressed within the type system. Of particular use in dependently typed programming are indexed types that refine data by computationally useful information. For example, the Nindexed type of vectors ref ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
Abstract. Dependently typed programming languages allow sophisticated properties of data to be expressed within the type system. Of particular use in dependently typed programming are indexed types that refine data by computationally useful information. For example, the Nindexed type of vectors refines lists by their lengths. Other data types may be refined in similar ways, but programmers must produce purposespecific refinements on an ad hoc basis, developers must anticipate which refinements to include in libraries, and implementations often store redundant information about data and their refinements. This paper shows how to generically derive inductive characterisations of refinements of inductive types, and argues that these characterisations can alleviate some of the aforementioned difficulties associated with ad hoc refinements. These characterisations also ensure that standard techniques for programming with and reasoning about inductive types are applicable to refinements, and that refinements can themselves be further refined. 1