Results 1 
6 of
6
Quantum logic in dagger kernel categories
 Order
"... This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial inject ..."
Abstract

Cited by 14 (12 self)
 Add to MetaCart
(Show Context)
This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial injections, Hilbert spaces (also modulo phase), and Boolean algebras, and (2) have interesting categorical/logical/ordertheoretic properties, in terms of kernel fibrations, such as existence of pullbacks, factorisation, orthomodularity, atomicity and completeness. For instance, the Sasaki hook and andthen connectives are obtained, as adjoints, via the existentialpullback adjunction between fibres. 1
Container Types Categorically
, 2000
"... A program derivation is said to be polytypic if some of its parameters are data types. Often these data types are container types, whose elements store data. Polytypic program derivations necessitate a general, noninductive definition of `container (data) type'. Here we propose such a definiti ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
A program derivation is said to be polytypic if some of its parameters are data types. Often these data types are container types, whose elements store data. Polytypic program derivations necessitate a general, noninductive definition of `container (data) type'. Here we propose such a definition: a container type is a relator that has membership. It is shown how this definition implies various other properties that are shared by all container types. In particular, all container types have a unique strength, and all natural transformations between container types are strong. Capsule Review Progress in a scientific dicipline is readily equated with an increase in the volume of knowledge, but the true milestones are formed by the introduction of solid, precise and usable definitions. Here you will find the first generic (`polytypic') definition of the notion of `container type', a definition that is remarkably simple and suitable for formal generic proofs (as is amply illustrated in t...
Abstract Quantum Logic in Dagger Categories with Kernels
, 902
"... This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial inject ..."
Abstract
 Add to MetaCart
(Show Context)
This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial injections, Hilbert spaces (also modulo phase), and Boolean algebras, and (2) have interesting categorical/logical properties, in terms of kernel fibrations, such as existence of pullbacks, factorisation, and orthomodularity. For instance, the Sasaki hook and andthen connectives are obtained, as adjoints, via the existentialpullback adjunction between fibres. 1
Acquisitions and Acquisitions et Bibliographie Services services bibliographiques
"... licence allowing the ..."
(Show Context)
Relations in Categories
, 2000
"... This thesis investigates relations over a category C relative to an (E; M)factori ..."
Abstract
 Add to MetaCart
This thesis investigates relations over a category C relative to an (E; M)factori
Quantum Logic in Dagger Categories with Kernels
"... This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial inject ..."
Abstract
 Add to MetaCart
(Show Context)
This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial injections, Hilbert spaces (also modulo phase), and Boolean algebras, and (2) have interesting categorical/logical properties, in terms of kernel fibrations, such as existence of pullbacks, factorisation, and orthomodularity. For instance, the Sasaki hook and andthen connectives are obtained, as adjoints, via the existentialpullback adjunction between fibres. 1