Results 1 
2 of
2
Linear realizability and full completeness for typed lambda calculi
 Annals of Pure and Applied Logic
, 2005
"... We present the model construction technique called Linear Realizability. It consists in building a category of Partial Equivalence Relations over a Linear Combinatory Algebra. We illustrate how it can be used to provide models, which are fully complete for various typed λcalculi. In particular, we ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
(Show Context)
We present the model construction technique called Linear Realizability. It consists in building a category of Partial Equivalence Relations over a Linear Combinatory Algebra. We illustrate how it can be used to provide models, which are fully complete for various typed λcalculi. In particular, we focus on special Linear Combinatory Algebras of partial involutions, and we present PER models over them which are fully complete, inter alia, w.r.t. the following languages and theories: the fragment of System F consisting of MLtypes, the maximal theory on the simply typed λcalculus with finitely many ground constants, and the maximal theory on an infinitary version of this latter calculus. Key words: Typed lambdacalculi, MLpolymorphic types, linear logic, hyperdoctrines, PER models, Geometry of Interaction, (axiomatic) full completeness