Results 1 
5 of
5
Global Optimization of MINLP Problems in Process Synthesis and Design
 Computers & Chemical Engineering
, 1997
"... : Two new methodologies for the global optimization of MINLP models, the Special structure Mixed Integer Nonlinear ffBB, SMINffBB, and the General structure Mixed Integer Nonlinear ffBB, GMINffBB, are presented. Their theoretical foundations provide guarantees that the global optimum solution of ..."
Abstract

Cited by 15 (6 self)
 Add to MetaCart
: Two new methodologies for the global optimization of MINLP models, the Special structure Mixed Integer Nonlinear ffBB, SMINffBB, and the General structure Mixed Integer Nonlinear ffBB, GMINffBB, are presented. Their theoretical foundations provide guarantees that the global optimum solution of MINLPs involving twicedifferentiable nonconvex functions in the continuous variables can be identified. The conditions imposed on the functionality of the binary variables differ for each method : linear and mixed bilinear terms can be treated with the SMINffBB; mixed nonlinear terms whose continuous relaxation is twicedifferentiable are handled by the GMINffBB. While both algorithms use the concept of a branch & bound tree, they rely on fundamentally different bounding and branching strategies. In the GMINffBB algorithm, lower (upper) bounds at each node result from the solution of convex (nonconvex) MINLPs derived from the original problem. The construction of convex lower bound...
Global Optimization of MixedInteger Nonlinear Problems
 AIChE J
"... Two novel deterministic global optimization algorithms for nonconvex mixedinteger problems (MINLPs) are proposed, using the advances of the ffBB algorithm for nonconvex NLPs Adjiman et al. (1998a). The Special Structure MixedInteger ffBB algorithm (SMINffBB addresses problems with nonconvexities ..."
Abstract

Cited by 14 (2 self)
 Add to MetaCart
Two novel deterministic global optimization algorithms for nonconvex mixedinteger problems (MINLPs) are proposed, using the advances of the ffBB algorithm for nonconvex NLPs Adjiman et al. (1998a). The Special Structure MixedInteger ffBB algorithm (SMINffBB addresses problems with nonconvexities in the continuous variables and linear and mixedbilinear participation of the binary variables. The General Structure MixedInteger ffBB algorithm (GMINffBB), is applicable to a very general class of problems for which the continuous relaxation is twice continuously differentiable. Both algorithms are developed using the concepts of branchandbound, but they differ in their approach to each of the required steps. The SMINffBB algorithm is based on the convex underestimation of the continuous functions while the GMINffBB algorithm is centered around the convex relaxation of the entire problem. Both algorithms rely on optimization or interval based variable bound updates to enhance effici...
MixedInteger Nonlinear Optimization in Process Synthesis
, 1998
"... The use of networks allows the representation of a variety of important engineering problems. The treatment of a particular class of network applications, the process synthesis problem, is exposed in this paper. Process Synthesis seeks to develop systematically process flowsheets that convert raw ma ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
The use of networks allows the representation of a variety of important engineering problems. The treatment of a particular class of network applications, the process synthesis problem, is exposed in this paper. Process Synthesis seeks to develop systematically process flowsheets that convert raw materials into desired products. In recent years, the optimization approach to process synthesis has shown promise in tackling this challenge. It requires the development of a network of interconnected units, the process superstructure, that represents the alternative process flowsheets. The mathematical modeling of the superstructure has a mixed set of binary and continuous variables and results in a mixedinteger optimization model. Due to the nonlinearity of chemical models, these problems are generally classified as MixedInteger Nonlinear Programming (MINLP) problems. A number of local optimization algorithms, developed for the solution of this class of problems, are presented in this pap...
Nonlinear and MixedInteger Optimization in Chemical Process Network Systems
"... . The use of networks allows the representation of a variety of important engineering problems. The treatment of a particular class of network applications, the Process Synthesis problem, is exposed in this paper. Process Synthesis seeks to develop systematically process flowsheets that convert raw ..."
Abstract
 Add to MetaCart
. The use of networks allows the representation of a variety of important engineering problems. The treatment of a particular class of network applications, the Process Synthesis problem, is exposed in this paper. Process Synthesis seeks to develop systematically process flowsheets that convert raw materials into desired products. In recent years, the optimization approach to process synthesis has shown promise in tackling this challenge. It requires the development of a network of interconnected units, the process superstructure, that represents the alternative process flowsheets. The mathematical modeling of the superstructure has a mixed set of binary and continuous variables and results in a mixedinteger optimization model. Due to the nonlinearity of chemical models, these problems are generally classified as MixedInteger Nonlinear Programming (MINLP) problems. A number of local optimization algorithms for MINLP problems are outlined in this paper: Generalized Benders Decompositi...