Results 1 
9 of
9
Global Optimization of MixedInteger Nonlinear Problems
 AIChE J
"... Two novel deterministic global optimization algorithms for nonconvex mixedinteger problems (MINLPs) are proposed, using the advances of the ffBB algorithm for nonconvex NLPs Adjiman et al. (1998a). The Special Structure MixedInteger ffBB algorithm (SMINffBB addresses problems with nonconvexities ..."
Abstract

Cited by 25 (4 self)
 Add to MetaCart
Two novel deterministic global optimization algorithms for nonconvex mixedinteger problems (MINLPs) are proposed, using the advances of the ffBB algorithm for nonconvex NLPs Adjiman et al. (1998a). The Special Structure MixedInteger ffBB algorithm (SMINffBB addresses problems with nonconvexities in the continuous variables and linear and mixedbilinear participation of the binary variables. The General Structure MixedInteger ffBB algorithm (GMINffBB), is applicable to a very general class of problems for which the continuous relaxation is twice continuously differentiable. Both algorithms are developed using the concepts of branchandbound, but they differ in their approach to each of the required steps. The SMINffBB algorithm is based on the convex underestimation of the continuous functions while the GMINffBB algorithm is centered around the convex relaxation of the entire problem. Both algorithms rely on optimization or interval based variable bound updates to enhance effici...
Deterministic Global Optimization In Design, Control, And Computational Chemistry
 IMA Volumes in Mathematics and its Applications : Large Scale Optimization with Applications, Part II
, 1997
"... . This paper presents an overview of the deterministic global optimization approaches and their applications in the areas of Process Design, Control, and Computational Chemistry. The focus is on (i) decompositionbased primal dual methods, (ii) methods for generalized geometric programming problems, ..."
Abstract

Cited by 12 (7 self)
 Add to MetaCart
. This paper presents an overview of the deterministic global optimization approaches and their applications in the areas of Process Design, Control, and Computational Chemistry. The focus is on (i) decompositionbased primal dual methods, (ii) methods for generalized geometric programming problems, and (iii) global optimization methods for general nonlinear programming problems. The classes of mathematical problems that are addressed range from indefinite quadratic programming to concave programs, to quadratically constrained problems, to polynomials, to general twice continuously differentiable nonlinear optimization problems. For the majority of the presented methods nondistributed global optimization approaches are discussed with the exception of decompositionbased methods where a distributed global optimization approach is presented. 1. Background. A significant effort has been expended in the last five decades toward theoretical and algorithmic studies of applications that arise...
Reformulation and Convex Relaxation Techniques for Global Optimization
 4OR
, 2004
"... Many engineering optimization problems can be formulated as nonconvex nonlinear programming problems (NLPs) involving a nonlinear objective function subject to nonlinear constraints. Such problems may exhibit more than one locally optimal point. However, one is often solely or primarily interested i ..."
Abstract

Cited by 10 (8 self)
 Add to MetaCart
(Show Context)
Many engineering optimization problems can be formulated as nonconvex nonlinear programming problems (NLPs) involving a nonlinear objective function subject to nonlinear constraints. Such problems may exhibit more than one locally optimal point. However, one is often solely or primarily interested in determining the globally optimal point. This thesis is concerned with techniques for establishing such global optima using spatial BranchandBound (sBB) algorithms.
MixedInteger Nonlinear Optimization in Process Synthesis
, 1998
"... The use of networks allows the representation of a variety of important engineering problems. The treatment of a particular class of network applications, the process synthesis problem, is exposed in this paper. Process Synthesis seeks to develop systematically process flowsheets that convert raw ma ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
The use of networks allows the representation of a variety of important engineering problems. The treatment of a particular class of network applications, the process synthesis problem, is exposed in this paper. Process Synthesis seeks to develop systematically process flowsheets that convert raw materials into desired products. In recent years, the optimization approach to process synthesis has shown promise in tackling this challenge. It requires the development of a network of interconnected units, the process superstructure, that represents the alternative process flowsheets. The mathematical modeling of the superstructure has a mixed set of binary and continuous variables and results in a mixedinteger optimization model. Due to the nonlinearity of chemical models, these problems are generally classified as MixedInteger Nonlinear Programming (MINLP) problems. A number of local optimization algorithms, developed for the solution of this class of problems, are presented in this pap...
www.elsevier.com/locate/cor Reverse logistics network design with stochastic lead times
"... This work is concerned with the efficient design of a reverse logistics network using an extended version of models currently found in the literature. Those traditional, basic models are formulated as mixed integer linear programs (MILPmodel) and determine which facilities to open that minimize the ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
(Show Context)
This work is concerned with the efficient design of a reverse logistics network using an extended version of models currently found in the literature. Those traditional, basic models are formulated as mixed integer linear programs (MILPmodel) and determine which facilities to open that minimize the investment, processing, transportation, disposal and penalty costs while supply, demand and capacity constraints are satisfied. However, we show that they can be improved when they are combined with a queueing model because it enables to account for (1) some dynamic aspects like lead time and inventory positions, and (2) the higher degree of uncertainty inherent to reverse logistics. Since this extension introduces nonlinear relationships, the problem is defined as a mixed integer nonlinear program (MINLPmodel). Due to this additional complexity, the MINLPmodel is presented for a single productsinglelevel network. Several examples are solved with a genetic algorithm based on the technique of differential evolution. � 2005 Published by Elsevier Ltd.
Nonlinear and MixedInteger Optimization in Chemical Process Network Systems
, 1998
"... The use of networks allows the representation of a variety of important engineering problems. The treatment of a particular class of network applications, the Process Synthesis problem, is exposed in this paper. Process Synthesis seeks to develop systematically process flowsheets that convert raw ..."
Abstract
 Add to MetaCart
The use of networks allows the representation of a variety of important engineering problems. The treatment of a particular class of network applications, the Process Synthesis problem, is exposed in this paper. Process Synthesis seeks to develop systematically process flowsheets that convert raw materials into desired products. In recent years, the optimization approach to process synthesis has shown promise in tackling this challenge. It requires the development of a network of interconnected units, the process superstructure, that represents the alternative process flowsheets. The mathematical modeling of the superstructure has a mixed set of binary and continuous variables and results in a mixedinteger optimization model. Due to the nonlinearity of chemical models, these problems are generally classified as MixedInteger Nonlinear Programming (MINLP) problems. A number of local optimization algorithms for MINLP problems are outlined in this paper: Generalized Benders Decompositi...