Results 1 
3 of
3
The Mathematical Development Of Set Theory  From Cantor To Cohen
 The Bulletin of Symbolic Logic
, 1996
"... This article is dedicated to Professor Burton Dreben on his coming of age. I owe him particular thanks for his careful reading and numerous suggestions for improvement. My thanks go also to Jose Ruiz and the referee for their helpful comments. Parts of this account were given at the 1995 summer meet ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
This article is dedicated to Professor Burton Dreben on his coming of age. I owe him particular thanks for his careful reading and numerous suggestions for improvement. My thanks go also to Jose Ruiz and the referee for their helpful comments. Parts of this account were given at the 1995 summer meeting of the Association for Symbolic Logic at Haifa, in the Massachusetts Institute of Technology logic seminar, and to the Paris Logic Group. The author would like to express his thanks to the various organizers, as well as his gratitude to the Hebrew University of Jerusalem for its hospitality during the preparation of this article in the autumn of 1995.
BERNAYS AND SET THEORY
"... Abstract. We discuss the work of Paul Bernays in set theory, mainly his axiomatization and his use of classes but also his higherorder reflection principles. Paul Isaak Bernays (1888–1977) is an important figure in the development of mathematical logic, being the main bridge between Hilbert and Göd ..."
Abstract
 Add to MetaCart
Abstract. We discuss the work of Paul Bernays in set theory, mainly his axiomatization and his use of classes but also his higherorder reflection principles. Paul Isaak Bernays (1888–1977) is an important figure in the development of mathematical logic, being the main bridge between Hilbert and Gödel in the intermediate generation and making contributions in proof theory, set theory, and the philosophy of mathematics. Bernays is best known for the twovolume 1934,1939 Grundlagen der Mathematik [39, 40], written solely by him though Hilbert was retained as first author. Going into many reprintings and an eventual second edition thirty years later, this monumental work provided a magisterial exposition of the work of the Hilbert school in the formalization of firstorder logic and in proof theory and the work of Gödel on incompleteness and its surround, including the first complete proof of the Second Incompleteness Theorem. 1 Recent reevaluation of Bernays ’ role actually places him at the center of the development of mathematical logic and Hilbert’s program. 2 But starting in his forties, Bernays did his most individuated, distinctive mathematical work in set theory, providing a timely axiomatization and later applying higherorder reflection principles, and produced a stream of
John von Neumann and Hilbert's School of Foundations of Mathematics ∗
"... The aim of the paper is to describe main achievements of John von Neumann in the foundations of mathematics and to indicate his connections with Hilbert's School. In particular we shall discuss von Neumann's contributions to the axiomatic set theory, his proof of the consistency of a fragment of the ..."
Abstract
 Add to MetaCart
The aim of the paper is to describe main achievements of John von Neumann in the foundations of mathematics and to indicate his connections with Hilbert's School. In particular we shall discuss von Neumann's contributions to the axiomatic set theory, his proof of the consistency of a fragment of the arithmetic of natural numbers and his discovery (independent of Gödel) of the second incompleteness theorem. 1