Results 1  10
of
233
Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds
 Journal of Machine Learning Research
, 2003
"... The problem of dimensionality reduction arises in many fields of information processing, including machine learning, data compression, scientific visualization, pattern recognition, and neural computation. ..."
Abstract

Cited by 260 (9 self)
 Add to MetaCart
The problem of dimensionality reduction arises in many fields of information processing, including machine learning, data compression, scientific visualization, pattern recognition, and neural computation.
Blind Source Separation by Sparse Decomposition in a Signal Dictionary
, 2000
"... Introduction In blind source separation an Nchannel sensor signal x(t) arises from M unknown scalar source signals s i (t), linearly mixed together by an unknown N M matrix A, and possibly corrupted by additive noise (t) x(t) = As(t) + (t) (1.1) We wish to estimate the mixing matrix A and the M ..."
Abstract

Cited by 199 (31 self)
 Add to MetaCart
Introduction In blind source separation an Nchannel sensor signal x(t) arises from M unknown scalar source signals s i (t), linearly mixed together by an unknown N M matrix A, and possibly corrupted by additive noise (t) x(t) = As(t) + (t) (1.1) We wish to estimate the mixing matrix A and the Mdimensional source signal s(t). Many natural signals can be sparsely represented in a proper signal dictionary s i (t) = K X k=1 C ik ' k (t) (1.2) The scalar functions ' k
A Variational Bayesian Framework for Graphical Models
 In Advances in Neural Information Processing Systems 12
, 2000
"... This paper presents a novel practical framework for Bayesian model averaging and model selection in probabilistic graphical models. Our approach approximates full posterior distributions over model parameters and structures, as well as latent variables, in an analytical manner. These posteriors ..."
Abstract

Cited by 193 (6 self)
 Add to MetaCart
This paper presents a novel practical framework for Bayesian model averaging and model selection in probabilistic graphical models. Our approach approximates full posterior distributions over model parameters and structures, as well as latent variables, in an analytical manner. These posteriors fall out of a freeform optimization procedure, which naturally incorporates conjugate priors. Unlike in large sample approximations, the posteriors are generally nonGaussian and no Hessian needs to be computed. Predictive quantities are obtained analytically. The resulting algorithm generalizes the standard Expectation Maximization algorithm, and its convergence is guaranteed. We demonstrate that this approach can be applied to a large class of models in several domains, including mixture models and source separation. 1 Introduction A standard method to learn a graphical model 1 from data is maximum likelihood (ML). Given a training dataset, ML estimates a single optimal value f...
Inferring Parameters and Structure of Latent Variable Models by Variational Bayes
, 1999
"... Current methods for learning graphical models with latent variables and a fixed structure estimate optimal values for the model parameters. Whereas this approach usually produces overfitting and suboptimal generalization performance, carrying out the Bayesian program of computing the full posterior ..."
Abstract

Cited by 137 (1 self)
 Add to MetaCart
Current methods for learning graphical models with latent variables and a fixed structure estimate optimal values for the model parameters. Whereas this approach usually produces overfitting and suboptimal generalization performance, carrying out the Bayesian program of computing the full posterior distributions over the parameters remains a difficult problem. Moreover, learning the structure of models with latent variables, for which the Bayesian approach is crucial, is yet a harder problem. In this paper I present the Variational Bayes framework, which provides a solution to these problems. This approach approximates full posterior distributions over model parameters and structures, as well as latent variables, in an analytical manner without resorting to sampling methods. Unlike in the Laplace approximation, these posteriors are generally nonGaussian and no Hessian needs to be computed. The resulting algorithm generalizes the standard Expectation Maximization a...
A probabilistic framework for the adaptation and comparison of image codes
 J. Opt. Soc. Am. A
, 1999
"... We apply a Bayesian method for inferring an optimal basis to the problem of finding efficient image codes for natural scenes. The basis functions learned by the algorithm are oriented and localized in both space and frequency, bearing a resemblance to twodimensional Gabor functions, and increasing ..."
Abstract

Cited by 114 (10 self)
 Add to MetaCart
We apply a Bayesian method for inferring an optimal basis to the problem of finding efficient image codes for natural scenes. The basis functions learned by the algorithm are oriented and localized in both space and frequency, bearing a resemblance to twodimensional Gabor functions, and increasing the number of basis functions results in a greater sampling density in position, orientation, and scale. These properties also resemble the spatial receptive fields of neurons in the primary visual cortex of mammals, suggesting that the receptivefield structure of these neurons can be accounted for by a general efficient coding principle. The probabilistic framework provides a method for comparing the coding efficiency of different bases objectively by calculating their probability given the observed data or by measuring the entropy of the basis function coefficients. The learned bases are shown to have better coding efficiency than traditional Fourier and wavelet bases. This framework also provides a Bayesian solution to the problems of image denoising and filling in of missing pixels. We demonstrate that the results obtained by applying the learned bases to these problems are improved over those obtained with traditional techniques. © 1999 Optical Society of America [S07403232(99)031075] OCIS codes: 000.5490, 100.2960, 100.3010.
An Unsupervised Ensemble Learning Method for Nonlinear Dynamic StateSpace Models
 Neural Computation
, 2001
"... A Bayesian ensemble learning method is introduced for unsupervised extraction of dynamic processes from noisy data. The data are assumed to be generated by an unknown nonlinear mapping from unknown factors. The dynamics of the factors are modeled using a nonlinear statespace model. The nonlinear map ..."
Abstract

Cited by 89 (32 self)
 Add to MetaCart
A Bayesian ensemble learning method is introduced for unsupervised extraction of dynamic processes from noisy data. The data are assumed to be generated by an unknown nonlinear mapping from unknown factors. The dynamics of the factors are modeled using a nonlinear statespace model. The nonlinear mappings in the model are represented using multilayer perceptron networks. The proposed method is computationally demanding, but it allows the use of higher dimensional nonlinear latent variable models than other existing approaches. Experiments with chaotic data show that the new method is able to blindly estimate the factors and the dynamic process which have generated the data. It clearly outperforms currently available nonlinear prediction techniques in this very di#cult test problem.
Probabilistic Independent Component Analysis
, 2003
"... Independent Component Analysis is becoming a popular exploratory method for analysing complex data such as that from FMRI experiments. The application of such 'modelfree' methods, however, has been somewhat restricted both by the view that results can be uninterpretable and by the lack of ..."
Abstract

Cited by 79 (12 self)
 Add to MetaCart
Independent Component Analysis is becoming a popular exploratory method for analysing complex data such as that from FMRI experiments. The application of such 'modelfree' methods, however, has been somewhat restricted both by the view that results can be uninterpretable and by the lack of ability to quantify statistical significance. We present an integrated approach to Probabilistic ICA for FMRI data that allows for nonsquare mixing in the presence of Gaussian noise. We employ an objective estimation of the amount of Gaussian noise through Bayesian analysis of the true dimensionality of the data, i.e. the number of activation and nonGaussian noise sources. Reduction of the data to this 'true' subspace before the ICA decomposition automatically results in an estimate of the noise, leading to the ability to assign significance to voxels in ICA spatial maps. Estimation of the number of intrinsic sources not only enables us to carry out probabilistic modelling, but also achieves an asymptotically unique decomposition of the data. This reduces problems of interpretation, as each final independent component is now much more likely to be due to only one physical or physiological process. We also describe other improvements to standard ICA, such as temporal prewhitening and variance normafisation of timeseries, the latter being particularly useful in the context of dimensionality reduction when weak activation is present. We discuss the use of prior information about the spatiotemporal nature of the source processes, and an alternativehypothesis testing approach for inference, using Gaussian mixture models. The performance of our approach is illustrated and evaluated on real and complex artificial FMRI data, and compared to the spatiotemporal accuracy of restfits obtaine...
Graphical models and automatic speech recognition
 Mathematical Foundations of Speech and Language Processing
, 2003
"... Graphical models provide a promising paradigm to study both existing and novel techniques for automatic speech recognition. This paper first provides a brief overview of graphical models and their uses as statistical models. It is then shown that the statistical assumptions behind many pattern recog ..."
Abstract

Cited by 68 (13 self)
 Add to MetaCart
Graphical models provide a promising paradigm to study both existing and novel techniques for automatic speech recognition. This paper first provides a brief overview of graphical models and their uses as statistical models. It is then shown that the statistical assumptions behind many pattern recognition techniques commonly used as part of a speech recognition system can be described by a graph – this includes Gaussian distributions, mixture models, decision trees, factor analysis, principle component analysis, linear discriminant analysis, and hidden Markov models. Moreover, this paper shows that many advanced models for speech recognition and language processing can also be simply described by a graph, including many at the acoustic, pronunciation, and languagemodeling levels. A number of speech recognition techniques born directly out of the graphicalmodels paradigm are also surveyed. Additionally, this paper includes a novel graphical analysis regarding why derivative (or delta) features improve hidden Markov modelbased speech recognition by improving structural discriminability. It also includes an example where a graph can be used to represent language model smoothing constraints. As will be seen, the space of models describable by a graph is quite large. A thorough exploration of this space should yield techniques that ultimately will supersede the hidden Markov model.
Nonlinear Independent Component Analysis Using Ensemble Learning: Experiments And Discussion
, 2000
"... In this paper, we present experimental results on a nonlinear independent component analysis approach based on Bayesian ensemble learning. The theory of the method is discussed in a companion paper. Simulations with artificial and natural data demonstrate the feasibility and good performance of the ..."
Abstract

Cited by 57 (21 self)
 Add to MetaCart
In this paper, we present experimental results on a nonlinear independent component analysis approach based on Bayesian ensemble learning. The theory of the method is discussed in a companion paper. Simulations with artificial and natural data demonstrate the feasibility and good performance of the proposed approach. We also discuss the relationships of the method to other existing methods.
Energybased models for sparse overcomplete representations
 Journal of Machine Learning Research
, 2003
"... We present a new way of extending independent components analysis (ICA) to overcomplete representations. In contrast to the causal generative extensions of ICA which maintain marginal independence of sources, we define features as deterministic (linear) functions of the inputs. This assumption resul ..."
Abstract

Cited by 53 (14 self)
 Add to MetaCart
We present a new way of extending independent components analysis (ICA) to overcomplete representations. In contrast to the causal generative extensions of ICA which maintain marginal independence of sources, we define features as deterministic (linear) functions of the inputs. This assumption results in marginal dependencies among the features, but conditional independence of the features given the inputs. By assigning energies to the features a probability distribution over the input states is defined through the Boltzmann distribution. Free parameters of this model are trained using the contrastive divergence objective (Hinton, 2002). When the number of features is equal to the number of input dimensions this energybased model reduces to noiseless ICA and we show experimentally that the proposed learning algorithm is able to perform blind source separation on speech data. In additional experiments we train overcomplete energybased models to extract features from various standard datasets containing speech, natural images, handwritten digits and faces.