Results 1 
3 of
3
Understanding Mathematical Discourse
 Dialogue. Amsterdam University
, 1999
"... Discourse Understanding is hard. This seems to be especially true for mathematical discourse, that is proofs. Restricting discourse to mathematical discourse allow us, however, to study the subject matter in its purest form. This domain of discourse is rich and welldefined, highly structured, offers ..."
Abstract

Cited by 7 (6 self)
 Add to MetaCart
Discourse Understanding is hard. This seems to be especially true for mathematical discourse, that is proofs. Restricting discourse to mathematical discourse allow us, however, to study the subject matter in its purest form. This domain of discourse is rich and welldefined, highly structured, offers a welldefined set of discourse relations and forces/allows us to apply mathematical reasoning. We give a brief discussion on selected linguistic phenomena of mathematical discourse, and an analysis from the mathematician’s point of view. Requirements for a theory of discourse representation are given, followed by a discussion of proofs plans that provide necessary context and structure. A large part of semantics construction is defined in terms of proof plan recognition and instantiation by matching and attaching. 1
Towards the Mechanical Verification of Textbook Proofs
"... Our goal is to implement a program for the machine verification of textbook proofs. We study the task from both the linguistics and automated reasoning perspective and give an indepth analysis for a sample textbook proof. We propose a framework for natural language proof understanding that extends ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Our goal is to implement a program for the machine verification of textbook proofs. We study the task from both the linguistics and automated reasoning perspective and give an indepth analysis for a sample textbook proof. We propose a framework for natural language proof understanding that extends and integrates stateoftheart technologies from Natural Language Processing (Discourse Representation Theory) and Automated Reasoning (Proof Planning) in a novel and promising way, having the potential to initiate progress in both of these disciplines.
Checking Textbook Proofs
 Int. Workshop on FirstOrder Theorem Proving (FTP'98), Technical Report E1852GS981
, 1998
"... . Our longrange goal is to implement a program for the machine verification of textbook proofs. We study the task from both the linguistics and deduction perspective and give an indepth analysis for a sample textbook proof. A three phase model for proof understanding is developed: parsing, str ..."
Abstract
 Add to MetaCart
. Our longrange goal is to implement a program for the machine verification of textbook proofs. We study the task from both the linguistics and deduction perspective and give an indepth analysis for a sample textbook proof. A three phase model for proof understanding is developed: parsing, structuring and refining. It shows that the combined application of techniques from both NLP and AR is quite successful. Moreover, it allows to uncover interesting insights that might initiate progress in both AI disciplines. Keywords: automated reasoning, natural language processing, discourse analysis 1 Introduction In [12], John McCarthy notes that "Checking mathematical proofs is potentially one of the most interesting and useful applications of automatic computers". In the first half of the 1960s, one of his students, namely Paul Abrahams, implemented a Lisp program for the machine verification of mathematical proofs [1]. The program, named Proofchecker, "was primarily directed towar...