Results 1 
5 of
5
Lectures on proof theory
 in Proc. Summer School in Logic, Leeds 67
, 1968
"... This is a survey of some of the principal developments in proof theory from its inception in the 1920s, at the hands of David Hilbert, up to the 1960s. Hilbert's aim was to use this as a tool in his nitary consistency program to eliminate the \actual in nite " in mathematics from proofs of purely ni ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
This is a survey of some of the principal developments in proof theory from its inception in the 1920s, at the hands of David Hilbert, up to the 1960s. Hilbert's aim was to use this as a tool in his nitary consistency program to eliminate the \actual in nite " in mathematics from proofs of purely nitary statements. One of the main approaches that turned out to be the most useful in pursuit of this program was that due to Gerhard Gentzen, in the 1930s, via his calculi of \sequents" and his CutElimination Theorem for them. Following that we trace how and why prima facie in nitary concepts, such as ordinals, and in nitary methods, such as the use of in nitely long proofs, gradually came to dominate prooftheoretical developments. In this rst lecture I will give anoverview of the developments in proof theory since Hilbert's initiative in establishing the subject in the 1920s. For this purpose I am following the rst part of a series of expository lectures that I gave for the Logic Colloquium `94 held in ClermontFerrand 2123 July 1994, but haven't published. The theme of my lectures there was that although Hilbert established his theory of proofs as a part of his foundational program and, for philosophical reasons whichwe shall get into, aimed to have it developed in a completely nitistic way, the actual work in proof theory This is the rst of three lectures that I delivered at the conference, Proof Theory: History
Three Conceptual Problems That Bug Me
, 1996
"... Introduction I will talk here about three problems that have bothered me for a number of years, during which time I have experimented with a variety of solutions and encouraged others to work on them. I have raised each of them separately both in full and in passing in various contexts, but thought ..."
Abstract
 Add to MetaCart
Introduction I will talk here about three problems that have bothered me for a number of years, during which time I have experimented with a variety of solutions and encouraged others to work on them. I have raised each of them separately both in full and in passing in various contexts, but thought it would be worthwhile on this occasion to bring them to your attention side by side. In this talk I will explain the problems, together with some things that have been tried in the past and some new ideas for their solution. Types of conceptual problems. A conceptual problem is not one which is formulated in precise technical terms and which calls for a definite answer. For this reason, there are no clearcut criteria for their solution, but one can bring some criteria to bear. These will vary from case to case. There are three general types of conceptual problems in mathematics of which the ones that I will discuss today are examples. These are: 1 ffi<F
Presentation to the panel, “Does mathematics need new axioms?”
"... The point of departure for this panel is a somewhat controversial paper that I published in the American Mathematical Monthly under the title “Does mathematics need new axioms? ” [4]. The paper itself was based on a lecture that I gave in 1997 to a joint session of the American Mathematical Society ..."
Abstract
 Add to MetaCart
The point of departure for this panel is a somewhat controversial paper that I published in the American Mathematical Monthly under the title “Does mathematics need new axioms? ” [4]. The paper itself was based on a lecture that I gave in 1997 to a joint session of the American Mathematical Society and the Mathematical Association of America, and it was thus written for a general mathematical audience. Basically, it was intended as an assessment of Gödel’s program for new axioms that he had advanced most prominently in his 1947 paper for the Monthly, entitled “What is Cantor’s continuum problem? ” [7]. My paper aimed to be an assessment of that program in the light of research in mathematical logic in the intervening years, beginning in the 1960s, but especially in more recent years. In my presentation here I shall be following [4] in its main points, though enlarging on some of them. Some passages are even taken almost verbatim from that paper where convenient, though of course all expository background material that was necessary there for a general audience is omitted. 1 For a logical audience I have written before about
La Théorie Des Cofinalités Possibles Et Ses Applications
, 1996
"... Cardinal arithmetic, which has given birth to set theory, seemed to be until lately either simple (addition and multiplication of innite cardinals are simple), or quite elastic (by forcing methods, it seemed possible to show the consistency with set theory of any reasonable behaviour of cardinal exp ..."
Abstract
 Add to MetaCart
Cardinal arithmetic, which has given birth to set theory, seemed to be until lately either simple (addition and multiplication of innite cardinals are simple), or quite elastic (by forcing methods, it seemed possible to show the consistency with set theory of any reasonable behaviour of cardinal exponentiation). Saharon Shelah has developped a rich theory with surprising applications in ardinal arithmetic, changing completely those beliefs. We present a state of the art of this theory and a certain number of its applications.