Results 1 
3 of
3
Localization of Classical Waves I: Acoustic Waves.
 Commun. Math. Phys
, 1996
"... We consider classical acoustic waves in a medium described by a position dependent mass density %(x). We assume that %(x) is a random perturbation of a periodic function % 0 (x) and that the periodic acoustic operator A 0 = \Gammar \Delta 1 %0 (x) r has a gap in the spectrum. We prove the existe ..."
Abstract

Cited by 40 (1 self)
 Add to MetaCart
We consider classical acoustic waves in a medium described by a position dependent mass density %(x). We assume that %(x) is a random perturbation of a periodic function % 0 (x) and that the periodic acoustic operator A 0 = \Gammar \Delta 1 %0 (x) r has a gap in the spectrum. We prove the existence of localized waves, i.e., finite energy solutions of the acoustic equations with the property that almost all of the wave's energy remains in a fixed bounded region of space at all times, with probability one. Localization of acoustic waves is a consequence of Anderson localization for the selfadjoint operators A = \Gammar \Delta 1 %(x) r on L 2 (R d ). We prove that, in the random medium described by %(x), the random operator A exhibits Anderson localization inside the gap in the spectrum of A 0 . This is shown even in situations when the gap is totally filled by the spectrum of the random operator; we can prescribe random environments that ensure localization in almost the wh...
Localization of Classical Waves II: Electromagnetic Waves.
 Commun. Math. Phys
, 1997
"... We consider electromagnetic waves in a medium described by a position dependent dielectric constant "(x). We assume that "(x) is a random perturbation of a periodic function " 0 (x) and that the periodic Maxwell operator M 0 = r \Theta 1 " 0 (x) r \Theta has a gap in the spe ..."
Abstract

Cited by 24 (2 self)
 Add to MetaCart
We consider electromagnetic waves in a medium described by a position dependent dielectric constant "(x). We assume that "(x) is a random perturbation of a periodic function " 0 (x) and that the periodic Maxwell operator M 0 = r \Theta 1 " 0 (x) r \Theta has a gap in the spectrum, were r \Theta \Psi = r\Theta\Psi. We prove the existence of localized waves, i.e., finite energy solutions of Maxwell's equations with the property that almost all of the wave's energy remains in a fixed bounded region of space at all times. Localization of electromagnetic waves is a consequence of Anderson localization for the selfadjoint operators M = r \Theta 1 "(x) r \Theta . We prove that, in the random medium described by "(x), the random operator M exhibits Anderson localization inside the gap in the spectrum of M 0 . This is shown even in situations when the gap is totally filled by the spectrum of the random operator; we can prescribe random environments that ensure localization in almo...
Dynamical localization II with an application to the almost Mathieu operator
 J. Statist. Phys
"... ..."