Results 1 
3 of
3
A new notation for arrows
 In International Conference on Functional Programming (ICFP ’01
, 2001
"... The categorical notion of monad, used by Moggi to structure denotational descriptions, has proved to be a powerful tool for structuring combinator libraries. Moreover, the monadic programming style provides a convenient syntax for many kinds of computation, so that each library defines a new sublang ..."
Abstract

Cited by 48 (1 self)
 Add to MetaCart
The categorical notion of monad, used by Moggi to structure denotational descriptions, has proved to be a powerful tool for structuring combinator libraries. Moreover, the monadic programming style provides a convenient syntax for many kinds of computation, so that each library defines a new sublanguage. Recently, several workers have proposed a generalization of monads, called variously “arrows ” or Freydcategories. The extra generality promises to increase the power, expressiveness and efficiency of the embedded approach, but does not mesh as well with the native abstraction and application. Definitions are typically given in a pointfree style, which is useful for proving general properties, but can be awkward for programming specific instances. In this paper we define a simple extension to the functional language Haskell that makes these new notions of computation more convenient to use. Our language is similar to the monadic style, and has similar reasoning properties. Moreover, it is extensible, in the sense that new combining forms can be defined as expressions in the host language. 1.
Modelling environments in callbyvalue programming languages
, 2003
"... In categorical semantics, there have traditionally been two approaches to modelling environments, one by use of finite products in cartesian closed categories, the other by use of the base categories of indexed categories with structure. Each requires modifications in order to account for environmen ..."
Abstract

Cited by 14 (4 self)
 Add to MetaCart
In categorical semantics, there have traditionally been two approaches to modelling environments, one by use of finite products in cartesian closed categories, the other by use of the base categories of indexed categories with structure. Each requires modifications in order to account for environments in callbyvalue programming languages. There have been two more general definitions along both of these lines: the first generalising from cartesian to symmetric premonoidal categories, the second generalising from indexed categories with specified structure to κcategories. In this paper, we investigate environments in callbyvalue languages by analysing a finegrain variant of Moggi’s computational λcalculus, giving two equivalent sound and complete classes of models: one given by closed Freyd categories, which are based on symmetric premonoidal categories, the other given by closed κcategories.
Monads Need Not Be Endofunctors
"... Abstract. We introduce a generalisation of monads, called relative monads, allowing for underlying functors between different categories. Examples include finitedimensional vector spaces, untyped and typed λcalculus syntax and indexed containers. We show that the Kleisli and EilenbergMoore constr ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
Abstract. We introduce a generalisation of monads, called relative monads, allowing for underlying functors between different categories. Examples include finitedimensional vector spaces, untyped and typed λcalculus syntax and indexed containers. We show that the Kleisli and EilenbergMoore constructions carry over to relative monads and are related to relative adjunctions. Under reasonable assumptions, relative monads are monoids in the functor category concerned and extend to monads, giving rise to a coreflection between monads and relative monads. Arrows are also an instance of relative monads. 1