Results 1 
4 of
4
A NATURAL AXIOMATIZATION OF COMPUTABILITY AND PROOF OF CHURCH’S THESIS
"... Abstract. Church’s Thesis asserts that the only numeric functions that can be calculated by effective means are the recursive ones, which are the same, extensionally, as the Turingcomputable numeric functions. The Abstract State Machine Theorem states that every classical algorithm is behaviorally e ..."
Abstract

Cited by 23 (10 self)
 Add to MetaCart
Abstract. Church’s Thesis asserts that the only numeric functions that can be calculated by effective means are the recursive ones, which are the same, extensionally, as the Turingcomputable numeric functions. The Abstract State Machine Theorem states that every classical algorithm is behaviorally equivalent to an abstract state machine. This theorem presupposes three natural postulates about algorithmic computation. Here, we show that augmenting those postulates with an additional requirement regarding basic operations gives a natural axiomatization of computability and a proof of Church’s Thesis, as Gödel and others suggested may be possible. In a similar way, but with a different set of basic operations, one can prove Turing’s Thesis, characterizing the effective string functions, and—in particular—the effectivelycomputable functions on string representations of numbers.
Step By Recursive Step: Church's Analysis Of Effective Calculability
 BULLETIN OF SYMBOLIC LOGIC
, 1997
"... Alonzo Church's mathematical work on computability and undecidability is wellknown indeed, and we seem to have an excellent understanding of the context in which it arose. The approach Church took to the underlying conceptual issues, by contrast, is less well understood. Why, for example, wa ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
Alonzo Church's mathematical work on computability and undecidability is wellknown indeed, and we seem to have an excellent understanding of the context in which it arose. The approach Church took to the underlying conceptual issues, by contrast, is less well understood. Why, for example, was "Church's Thesis" put forward publicly only in April 1935, when it had been formulated already in February/March 1934? Why did Church choose to formulate it then in terms of G odel's general recursiveness, not his own #definability as he had done in 1934? A number of letters were exchanged between Church and Paul Bernays during the period from December 1934 to August 1937; they throw light on critical developments in Princeton during that period and reveal novel aspects of Church's distinctive contribution to the analysis of the informal notion of e#ective calculability. In particular, they allow me to give informed, though still tentative answers to the questions I raised; the char...
Tag systems and Collatzlike functions
"... Tag systems were invented by Emil Leon Post and proven recursively unsolvable by Marvin Minsky. These production systems have shown very useful in constructing small universal (Turing complete) systems for several different classes of computational systems, including Turing machines, and are thus im ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Tag systems were invented by Emil Leon Post and proven recursively unsolvable by Marvin Minsky. These production systems have shown very useful in constructing small universal (Turing complete) systems for several different classes of computational systems, including Turing machines, and are thus important instruments for studying limits or boundaries of solvability and unsolvability. Although there are some results on tag systems and their limits of solvability and unsolvability, there are hardly any that consider both the shift number v, as well as the number of symbols µ. This paper aims to contribute to research on limits of solvability and unsolvability for tag systems, taking into account these two parameters. The main result is the reduction of the 3n + 1problem to a surprisingly small tag system. It indicates that the present unsolvability line – defined in terms of µ and v – for tag systems might be significantly decreased. Key words: Tag Systems, limits of solvability and unsolvability, universality,
Post’s Machine.
"... In 1936 Turing gave his answer to the question ”What is a computable number? ” by constructing his now wellknown Turing machines as formalisations of the actions of a human computor. Less wellknown is the almost synchronously published result by Emil Leon Post, in which a quasiidentical mechanism ..."
Abstract
 Add to MetaCart
In 1936 Turing gave his answer to the question ”What is a computable number? ” by constructing his now wellknown Turing machines as formalisations of the actions of a human computor. Less wellknown is the almost synchronously published result by Emil Leon Post, in which a quasiidentical mechanism was developed for similar purposes. In 1979 these Post ”toy ” machines were described in a little booklet, called ”Post’s machine ” by the Russian mathematician Uspensky. The purpose of this text was to advance abstract concepts as algorithm and programming for school children. In discussing this booklet in relation to the historical text it is based on, the author wants to show how this kind of ideas cannot only help to teach school children some of the basics of computer science, but furthermore contribute to a training in formal thinking. 1