Results 1 
6 of
6
On specifying graphical models for causation, and the identification problem
 Evaluation Review
, 2004
"... This paper (which is mainly expository) sets up graphical models for causation, having a bit less than the usual complement of hypothetical counterfactuals. Assuming the invariance of error distributions may be essential for causal inference, but the errors themselves need not be invariant. Graphs c ..."
Abstract

Cited by 18 (1 self)
 Add to MetaCart
This paper (which is mainly expository) sets up graphical models for causation, having a bit less than the usual complement of hypothetical counterfactuals. Assuming the invariance of error distributions may be essential for causal inference, but the errors themselves need not be invariant. Graphs can be interpreted using conditional distributions, so that we can better address connections between the mathematical framework and causality in the world. The identification problem is posed in terms of conditionals. As will be seen, causal relationships cannot be inferred from a data set by running regressions unless there is substantial prior knowledge about the mechanisms that generated the data. There are few successful applications of graphical models, mainly because few causal pathways can be excluded on a priori grounds. The invariance conditions themselves remain to be assessed.
From association to causation via regression
 Indiana: University of Notre Dame
, 1997
"... For nearly a century, investigators in the social sciences have used regression models to deduce causeandeffect relationships from patterns of association. Path models and automated search procedures are more recent developments. In my view, this enterprise has not been successful. The models tend ..."
Abstract

Cited by 16 (6 self)
 Add to MetaCart
For nearly a century, investigators in the social sciences have used regression models to deduce causeandeffect relationships from patterns of association. Path models and automated search procedures are more recent developments. In my view, this enterprise has not been successful. The models tend to neglect the difficulties in establishing causal relations, and the mathematical complexities tend to obscure rather than clarify the assumptions on which the analysis is based. Formal statistical inference is, by its nature, conditional. If maintained hypotheses A, B, C,... hold, then H can be tested against the data. However, if A, B, C,... remain in doubt, so must inferences about H. Careful scrutiny of maintained hypotheses should therefore be a critical part of empirical work a principle honored more often in the breach than the observance.
Statistical Models for Causation: What Inferential Leverage Do They Provide?” Evaluation Review, 30, 691–713. http://www.stat.berkeley.edu/users/census/oxcauser.pdf
 2008a). “Diagnostics Cannot Have Much Power Against General Alternatives.” http://www.stat.berkeley.edu/users/census/notest.pdf Freedman, D. A. (2008b). “Randomization Does Not Justify Logistic Regression.” http://www.stat.berkeley.edu/users/census/neylog
, 2006
"... Experiments offer more reliable evidence on causation than observational studies, which is not to gainsay the contribution to knowledge from observation. Experiments should be analyzed as experiments, not as observational studies. A simple comparison of rates might be just the right tool, with littl ..."
Abstract

Cited by 11 (4 self)
 Add to MetaCart
Experiments offer more reliable evidence on causation than observational studies, which is not to gainsay the contribution to knowledge from observation. Experiments should be analyzed as experiments, not as observational studies. A simple comparison of rates might be just the right tool, with little value added by “sophisticated” models. This article discusses current models for causation, as applied to experimental and observational data. The intentiontotreat principle and the effect of treatment on the treated will also be discussed. Flaws in perprotocol and treatmentreceived estimates will be demonstrated.
Statistical Models for Causation
, 2005
"... We review the basis for inferring causation by statistical modeling. Parameters should be stable under interventions, and so should error distributions. There are also statistical conditions on the errors. Stability is difficult to establish a priori, and the statistical conditions are equally probl ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
We review the basis for inferring causation by statistical modeling. Parameters should be stable under interventions, and so should error distributions. There are also statistical conditions on the errors. Stability is difficult to establish a priori, and the statistical conditions are equally problematic. Therefore, causal relationships are seldom to be inferred from a data set by running statistical algorithms, unless there is substantial prior knowledge about the mechanisms that generated the data. We begin with linear models (regression analysis) and then turn to graphical models, which may in principle be nonlinear.
Statistical Models for Causation: A Critical Review
"... Regression models are often used to infer causation from association. For instance, Yule [79] showed – or tried to show – that welfare was a cause of poverty. Path models and structural equation models are later ..."
Abstract
 Add to MetaCart
Regression models are often used to infer causation from association. For instance, Yule [79] showed – or tried to show – that welfare was a cause of poverty. Path models and structural equation models are later
Teaching Causal Inference In Experiments and Observational Studies
 ASA 1999
, 1999
"... Inference for causal effects is a critical activity in many branches of science and public policy. The field of statistics is the one field most suited to address such problems, whether from designed experiments or observational studies. Consequently, it is arguably essential that departments of sta ..."
Abstract
 Add to MetaCart
Inference for causal effects is a critical activity in many branches of science and public policy. The field of statistics is the one field most suited to address such problems, whether from designed experiments or observational studies. Consequently, it is arguably essential that departments of statistics teach courses in causal inference to both graduate and undergraduate students. This presentation will discuss some aspects of such courses based on: a graduate level course taught at Harvard for a half dozen years, sometimes jointly with the Department of Economics (with Professor Guido Imbens, now at UCLA), and current plans for an undergraduate core course at Harvard University. An expanded version of this brief document will outline the courses ' contents more completely. Moreover, a textbook by Imbens and Rubin, due to appear in 2000, will cover the basic material needed in both courses. The current course at Harvard begins with the definition of causal effects through potential outcomes. Causal estimands are comparisons of the outcomes that would have been observed under different exposures of units to treatments. This approach is commonly referred to as 'Rubin's Causal Model RCM " (Holland, 1986), but the formal notation in the context of randomizationbased inference in randomized experiments goes back to Neyman (1923), and the intuitive idea goes back centuries in various literatures; see also Fisher (1918), Tinbergen (1930) and Haavelmo (1944). The label "RCM " arises because of extensions (e.g., Rubin, 1974, 1977, 1978) that