Results 1  10
of
110
System F with type equality coercions
, 2007
"... We introduce System FC, which extends System F with support for nonsyntactic type equality. There are two main extensions: (i) explicit witnesses for type equalities, and (ii) open, nonparametric type functions, given meaning by toplevel equality axioms. Unlike System F, FC is expressive enough to ..."
Abstract

Cited by 75 (25 self)
 Add to MetaCart
We introduce System FC, which extends System F with support for nonsyntactic type equality. There are two main extensions: (i) explicit witnesses for type equalities, and (ii) open, nonparametric type functions, given meaning by toplevel equality axioms. Unlike System F, FC is expressive enough to serve as a target for several different sourcelanguage features, including Haskell’s newtype, generalised algebraic data types, associated types, functional dependencies, and perhaps more besides.
Type Checking with Open Type Functions
"... We report on an extension of Haskell with open typelevel functions and equality constraints that unifies earlier work on GADTs, functional dependencies, and associated types. The contribution of the paper is that we identify and characterise the key technical challenge of entailment checking; and w ..."
Abstract

Cited by 37 (18 self)
 Add to MetaCart
We report on an extension of Haskell with open typelevel functions and equality constraints that unifies earlier work on GADTs, functional dependencies, and associated types. The contribution of the paper is that we identify and characterise the key technical challenge of entailment checking; and we give a novel, decidable, sound, and complete algorithm to solve it, together with some practicallyimportant variants. Our system is implemented in GHC, and is already in active use.
Finally Tagless, Partially Evaluated  Tagless Staged Interpreters for Simpler Typed Languages
"... We have built the first family of tagless interpretations for a higherorder typed object language in a typed metalanguage (Haskell or ML) that require no dependent types, generalized algebraic data types, or postprocessing to eliminate tags. The statically typepreserving interpretations include an ..."
Abstract

Cited by 28 (7 self)
 Add to MetaCart
We have built the first family of tagless interpretations for a higherorder typed object language in a typed metalanguage (Haskell or ML) that require no dependent types, generalized algebraic data types, or postprocessing to eliminate tags. The statically typepreserving interpretations include an evaluator, a compiler (or staged evaluator), a partial evaluator, and callbyname and callbyvalue CPS transformers. Our main idea is to encode HOAS using cogen functions rather than data constructors. In other words, we represent object terms not in an initial algebra but using the coalgebraic structure of the λcalculus. Our representation also simulates inductive maps from types to types, which are required for typed partial evaluation and CPS transformations. Our encoding of an object term abstracts over the various ways to interpret it, yet statically assures that the interpreters never get stuck. To achieve selfinterpretation and show Jonesoptimality, we relate this exemplar of higherrank and higherkind polymorphism to plugging a term into a context of letpolymorphic bindings.
A constraintbased approach to guarded algebraic data types
 ACM Trans. Prog. Languages Systems
, 2007
"... We study HMG(X), an extension of the constraintbased type system HM(X) with deep pattern matching, polymorphic recursion, and guarded algebraic data types. Guarded algebraic data types subsume the concepts known in the literature as indexed types, guarded recursive datatype constructors, (firstcla ..."
Abstract

Cited by 24 (0 self)
 Add to MetaCart
We study HMG(X), an extension of the constraintbased type system HM(X) with deep pattern matching, polymorphic recursion, and guarded algebraic data types. Guarded algebraic data types subsume the concepts known in the literature as indexed types, guarded recursive datatype constructors, (firstclass) phantom types, and equality qualified types, and are closely related to inductive types. Their characteristic property is to allow every branch of a case construct to be typechecked under different assumptions about the type variables in scope. We prove that HMG(X) is sound and that, provided recursive definitions carry a type annotation, type inference can be reduced to constraint solving. Constraint solving is decidable, at least for some instances of X, but prohibitively expensive. Effective type inference for guarded algebraic data types is left as an issue for future research.
Observational Equality, Now!
 A SUBMISSION TO PLPV 2007
, 2007
"... This paper has something new and positive to say about propositional equality in programming and proof systems based on the CurryHoward correspondence between propositions and types. We have found a way to present a propositional equality type • which is substitutive, allowing us to reason by repla ..."
Abstract

Cited by 23 (8 self)
 Add to MetaCart
This paper has something new and positive to say about propositional equality in programming and proof systems based on the CurryHoward correspondence between propositions and types. We have found a way to present a propositional equality type • which is substitutive, allowing us to reason by replacing equal for equal in propositions; • which reflects the observable behaviour of values rather than their construction: in particular, we have extensionality— functions are equal if they take equal inputs to equal outputs; • which retains strong normalisation, decidable typechecking and canonicity—the property that closed normal forms inhabiting datatypes have canonical constructors; • which allows inductive data structures to be expressed in terms of a standard characterisation of wellfounded trees; • which is presented syntactically—you can implement it directly, and we are doing so—this approach stands at the core of Epigram 2; • which you can play with now: we have simulated our system by a shallow embedding in Agda 2, shipping as part of the standard examples package for that system [20]. Until now, it has always been necessary to sacrifice some of these aspects. The closest attempt in the literature is Altenkirch’s construction of a setoidmodel for a system with canonicity and extensionality on top of an intensional type theory with proofirrelevant propositions [4]. Our new proposal simplifies Altenkirch’s construction by adopting McBride’s heterogeneous approach to equality [18].
A framework for extended algebraic data types
 In Proc. of FLOPS’06, volume 3945 of LNCS
, 2006
"... Abstract. There are a number of extended forms of algebraic data types such as type classes with existential types and generalized algebraic data types. Such extensions are highly useful but their interaction has not been studied formally so far. Here, we present a unifying framework for these exten ..."
Abstract

Cited by 22 (9 self)
 Add to MetaCart
Abstract. There are a number of extended forms of algebraic data types such as type classes with existential types and generalized algebraic data types. Such extensions are highly useful but their interaction has not been studied formally so far. Here, we present a unifying framework for these extensions. We show that the combination of type classes and generalized algebraic data types allows us to express a number of interesting properties which are desired by programmers. We support type checking based on a novel constraint solver. Our results show that our system is practical and greatly extends the expressive power of languages such as Haskell and ML. 1
Comparing Libraries for Generic Programming in Haskell
, 2008
"... Datatypegeneric programming is defining functions that depend on the structure, or “shape”, of datatypes. It has been around for more than 10 years, and a lot of progress has been made, in particular in the lazy functional programming language Haskell. There are more than 10 proposals for generic p ..."
Abstract

Cited by 20 (10 self)
 Add to MetaCart
Datatypegeneric programming is defining functions that depend on the structure, or “shape”, of datatypes. It has been around for more than 10 years, and a lot of progress has been made, in particular in the lazy functional programming language Haskell. There are more than 10 proposals for generic programming libraries or language extensions for Haskell. To compare and characterize the many generic programming libraries in a typed functional language, we introduce a set of criteria and develop a generic programming benchmark: a set of characteristic examples testing various facets of datatypegeneric programming. We have implemented the benchmark for nine existing Haskell generic programming libraries and present the evaluation of the libraries. The comparison is useful for reaching a common standard for generic programming, but also for a programmer who has to choose a particular approach for datatypegeneric programming.
Programming with proofs and explicit contexts
 In Symposium on Principles and Practice of Declarative Programming, 2008. François Pottier and Nadji
"... This paper explores a new point in the design space of functional programming: functional programming with dependentlytyped higherorder data structures described in the logical framework LF. This allows us to program with proofs as higherorder data. We present a decidable bidirectional type syste ..."
Abstract

Cited by 20 (7 self)
 Add to MetaCart
This paper explores a new point in the design space of functional programming: functional programming with dependentlytyped higherorder data structures described in the logical framework LF. This allows us to program with proofs as higherorder data. We present a decidable bidirectional type system that distinguishes between dependentlytyped data and computations. To support reasoning about open data, our foundation makes contexts explicit. This provides us with a concise characterization of open data, which is crucial to elegantly describe proofs. In addition, we present an operational semantics for this language based on higherorder pattern matching for dependently typed objects. Based on this development, we prove progress and preservation.
The Gentle Art of Levitation
"... We present a closed dependent type theory whose inductive types are given not by a scheme for generative declarations, but by encoding in a universe. Each inductive datatype arises by interpreting its description—a firstclass value in a datatype of descriptions. Moreover, the latter itself has a de ..."
Abstract

Cited by 20 (4 self)
 Add to MetaCart
We present a closed dependent type theory whose inductive types are given not by a scheme for generative declarations, but by encoding in a universe. Each inductive datatype arises by interpreting its description—a firstclass value in a datatype of descriptions. Moreover, the latter itself has a description. Datatypegeneric programming thus becomes ordinary programming. We show some of the resulting generic operations and deploy them in particular, useful ways on the datatype of datatype descriptions itself. Surprisingly this apparently selfsupporting setup is achievable without paradox or infinite regress. 1.