Results 1 
4 of
4
A Bayesian method for the induction of probabilistic networks from data
 MACHINE LEARNING
, 1992
"... This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computerassisted hypothesis testing, automated scientific discovery, and automated construction of probabili ..."
Abstract

Cited by 1254 (30 self)
 Add to MetaCart
This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computerassisted hypothesis testing, automated scientific discovery, and automated construction of probabilistic expert systems. We extend the basic method to handle missing data and hidden (latent) variables. We show how to perform probabilistic inference by averaging over the inferences of multiple belief networks. Results are presented of a preliminary evaluation of an algorithm for constructing a belief network from a database of cases. Finally, we relate the methods in this paper to previous work, and we discuss open problems.
Theory Refinement on Bayesian Networks
, 1991
"... Theory refinement is the task of updating a domain theory in the light of new cases, to be done automatically or with some expert assistance. The problem of theory refinement under uncertainty is reviewed here in the context of Bayesian statistics, a theory of belief revision. The problem is reduced ..."
Abstract

Cited by 223 (5 self)
 Add to MetaCart
(Show Context)
Theory refinement is the task of updating a domain theory in the light of new cases, to be done automatically or with some expert assistance. The problem of theory refinement under uncertainty is reviewed here in the context of Bayesian statistics, a theory of belief revision. The problem is reduced to an incremental learning task as follows: the learning system is initially primed with a partial theory supplied by a domain expert, and thereafter maintains its own internal representation of alternative theories which is able to be interrogated by the domain expert and able to be incrementally refined from data. Algorithms for refinement of Bayesian networks are presented to illustrate what is meant by "partial theory", "alternative theory representation ", etc. The algorithms are an incremental variant of batch learning algorithms from the literature so can work well in batch and incremental mode. 1 Introduction Theory refinement is the task of updating a domain theory in the light of...
On a Deficiency of the FCI Algorithm Learning Bayesian Networks from Data
"... Causally insufficient structures (models with latent or hidden variables, or with confounding etc.) of joint probability distributions have been subject of intense study not only in statistics, but also in various AI systems. In AI, belief networks, being representations of joint probability distr ..."
Abstract
 Add to MetaCart
(Show Context)
Causally insufficient structures (models with latent or hidden variables, or with confounding etc.) of joint probability distributions have been subject of intense study not only in statistics, but also in various AI systems. In AI, belief networks, being representations of joint probability distribution with an underlying directed acyclic graph structure, are paid special attention due to the fact that efficient reasoning (uncertainty propagation) methods have been developed for belief network structures. Algorithms have been therefore developed to acquire the belief network structure from data. As artifacts due to variable hiding negatively influence the performance of derived belief networks, models with latent variables have been studied and several algorithms for learning belief network structure under causal insufficiency have also been developed. Regrettably, some of them are known already to be erroneous (e.g. IC algorithm of [12]). This paper is devoted to another alg...