Results 1  10
of
30
On the strength of Ramsey’s Theorem for pairs
 Journal of Symbolic Logic
, 2001
"... Abstract. We study the proof–theoretic strength and effective content denote Ramof the infinite form of Ramsey’s theorem for pairs. Let RT n k sey’s theorem for k–colorings of n–element sets, and let RT n < ∞ denote (∀k)RTn k. Our main result on computability is: For any n ≥ 2 and any computable (r ..."
Abstract

Cited by 41 (9 self)
 Add to MetaCart
Abstract. We study the proof–theoretic strength and effective content denote Ramof the infinite form of Ramsey’s theorem for pairs. Let RT n k sey’s theorem for k–colorings of n–element sets, and let RT n < ∞ denote (∀k)RTn k. Our main result on computability is: For any n ≥ 2 and any computable (recursive) k–coloring of the n–element sets of natural numbers, there is an infinite homogeneous set X with X ′ ′ ≤T 0 (n). Let I�n and B�n denote the �n induction and bounding schemes, respectively. Adapting the case n = 2 of the above result (where X is low2) to models is conservative of arithmetic enables us to show that RCA0 + I �2 + RT2 2 over RCA0 + I �2 for �1 1 statements and that RCA0 + I �3 + RT2 < ∞ is �1 1conservative over RCA0 + I �3. It follows that RCA0 + RT2 2 does not imply B �3. In contrast, J. Hirst showed that RCA0 + RT2 < ∞ does imply B �3, and we include a proof of a slightly strengthened version of this result. It follows that RT2 < ∞ is strictly stronger than RT2 2 over RC A0. 1.
Randomness, relativization, and Turing degrees
 J. Symbolic Logic
, 2005
"... We compare various notions of algorithmic randomness. First we consider relativized randomness. A set is nrandom if it is MartinLof random relative to . We show that a set is 2random if and only if there is a constant c such that infinitely many initial segments x of the set are cincompre ..."
Abstract

Cited by 38 (16 self)
 Add to MetaCart
We compare various notions of algorithmic randomness. First we consider relativized randomness. A set is nrandom if it is MartinLof random relative to . We show that a set is 2random if and only if there is a constant c such that infinitely many initial segments x of the set are cincompressible: C(x) c. The `only if' direction was obtained independently by Joseph Miller. This characterization can be extended to the case of timebounded Ccomplexity.
An extension of the recursively enumerable Turing degrees
 Journal of the London Mathematical Society
, 2006
"... Consider the countable semilattice RT consisting of the recursively enumerable Turing degrees. Although RT is known to be structurally rich, a major source of frustration is that no specific, natural degrees in RT have been discovered, except the bottom and top degrees, 0 and 0 ′. In order to overco ..."
Abstract

Cited by 22 (16 self)
 Add to MetaCart
Consider the countable semilattice RT consisting of the recursively enumerable Turing degrees. Although RT is known to be structurally rich, a major source of frustration is that no specific, natural degrees in RT have been discovered, except the bottom and top degrees, 0 and 0 ′. In order to overcome this difficulty, we embed RT into a larger degree structure which is better behaved. Namely, consider the countable distributive lattice Pw consisting of the weak degrees (also known as Muchnik degrees) of mass problems associated with nonempty Π 0 1 subsets of 2ω. It is known that Pw contains a bottom degree 0 and a top degree 1 and is structurally rich. Moreover, Pw contains many specific, natural degrees other than 0 and 1. In particular, we show that in Pw one has 0 < d < r1 < inf(r2, 1) < 1. Here, d is the weak degree of the diagonally nonrecursive functions, and rn is the weak degree of the nrandom reals. It is known that r1 can be characterized as the maximum weak degree ofaΠ 0 1 subset of 2ω of positive measure. We now show that inf(r2, 1) can be characterized as the maximum weak degree of a Π 0 1 subset of 2ω, the Turing upward closure of which is of positive measure. We exhibit a natural embedding of RT into Pw which is onetoone, preserves the semilattice structure of RT, carries 0 to 0, and carries 0 ′ to 1. Identifying RT with its image in Pw, we show that all of the degrees in RT except 0 and 1 are incomparable with the specific degrees d, r1, and inf(r2, 1) inPw. 1.
Number theory and elementary arithmetic
 Philosophia Mathematica
, 2003
"... Elementary arithmetic (also known as “elementary function arithmetic”) is a fragment of firstorder arithmetic so weak that it cannot prove the totality of an iterated exponential function. Surprisingly, however, the theory turns out to be remarkably robust. I will discuss formal results that show t ..."
Abstract

Cited by 17 (5 self)
 Add to MetaCart
Elementary arithmetic (also known as “elementary function arithmetic”) is a fragment of firstorder arithmetic so weak that it cannot prove the totality of an iterated exponential function. Surprisingly, however, the theory turns out to be remarkably robust. I will discuss formal results that show that many theorems of number theory and combinatorics are derivable in elementary arithmetic, and try to place these results in a broader philosophical context. 1
The Baire category theorem in weak subsystems of secondorder arithmetic
 THE JOURNAL OF SYMBOLIC LOGIC
, 1993
"... ..."
Mass problems and almost everywhere domination
 Mathematical Logic Quarterly
, 2007
"... We examine the concept of almost everywhere domination from the viewpoint of mass problems. Let AED and MLR be the set of reals which are almost everywhere dominating and MartinLöf random, respectively. Let b1, b2, b3 be the degrees of unsolvability of the mass problems associated with the sets AED ..."
Abstract

Cited by 10 (7 self)
 Add to MetaCart
We examine the concept of almost everywhere domination from the viewpoint of mass problems. Let AED and MLR be the set of reals which are almost everywhere dominating and MartinLöf random, respectively. Let b1, b2, b3 be the degrees of unsolvability of the mass problems associated with the sets AED, MLR×AED, MLR∩AED respectively. Let Pw be the lattice of degrees of unsolvability of mass problems associated with nonempty Π 0 1 subsets of 2 ω. Let 1 and 0 be the top and bottom elements of Pw. We show that inf(b1,1) and inf(b2,1) and inf(b3,1) belong to Pw and that 0 < inf(b1,1) < inf(b2,1) < inf(b3,1) < 1. Under the natural embedding of the recursively enumerable Turing degrees into Pw, we show that inf(b1,1) and inf(b3,1) but not inf(b2,1) are comparable with some recursively enumerable Turing degrees other than 0 and 0 ′. In order to make this paper more selfcontained, we exposit the proofs of some recent theorems due to Hirschfeldt, Miller, Nies, and Stephan.
Partition Theorems and Computability Theory
 Bull. Symbolic Logic
, 2004
"... The computabilitytheoretic and reverse mathematical aspects of various combinatorial principles, such as König’s Lemma and Ramsey’s Theorem, have received a great deal of attention and are active areas of research. We carry on this study of effective combinatorics by analyzing various partition the ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
The computabilitytheoretic and reverse mathematical aspects of various combinatorial principles, such as König’s Lemma and Ramsey’s Theorem, have received a great deal of attention and are active areas of research. We carry on this study of effective combinatorics by analyzing various partition theorems (such as Ramsey’s Theorem) with the aim of understanding the complexity of solutions to computable instances in terms of the Turing degrees and the arithmetical hierarchy. Our main focus is the study of the effective content of two partition theorems allowing infinitely many colors: the Canonical Ramsey Theorem of Erdös and Rado, and the Regressive Function Theorem of Kanamori and McAloon. Our results on the complexity of solutions rely heavily on a new, purely inductive, proof of the Canonical Ramsey Theorem. This study unearths some interesting relationships between these two partition theorems, Ramsey’s Theorem, and Konig’s Lemma, and these connections will be emphasized. We also study Ramsey degrees, i.e. those Turing degrees which are able to compute homogeneous sets for every computable 2coloring of pairs of natural numbers, in an attempt to further understand the effective content of Ramsey’s Theorem for exponent 2. We establish some new results about these degrees, and obtain as a corollary the nonexistence of a “universal ” computable 2coloring of pairs of natural numbers.
Π 0 1 sets and models of WKL0
"... We show that any two Medvedev complete Π 0 1 subsets of 2 ω are recursively homeomorphic. We obtain a Π 0 1 set Q ′ of countable coded ωmodels of WKL0 with a strong homogeneity property. We show that if G is a generic element of Q ′ , then the ωmodel of WKL0 coded by G satisfies ∀X∀Y (if X is de ..."
Abstract

Cited by 8 (5 self)
 Add to MetaCart
We show that any two Medvedev complete Π 0 1 subsets of 2 ω are recursively homeomorphic. We obtain a Π 0 1 set Q ′ of countable coded ωmodels of WKL0 with a strong homogeneity property. We show that if G is a generic element of Q ′ , then the ωmodel of WKL0 coded by G satisfies ∀X∀Y (if X is definable from Y, then X is Turing reducible to Y). We use a result of Kučera to refute some plausible conjectures concerning ωmodels of WKL0. We generalize our results to nonωmodels of WKL0. We discuss the significance of our results for foundations of mathematics.
The canonical Ramsey theorem and computability theory
"... Using the tools of computability theory and reverse mathematics, we study the complexity of two partition theorems, the Canonical Ramsey Theorem of Erdös and Rado, and the Regressive Function Theorem of Kanamori and McAloon. Our main aim is to analyze the complexity of the solutions to computable in ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
Using the tools of computability theory and reverse mathematics, we study the complexity of two partition theorems, the Canonical Ramsey Theorem of Erdös and Rado, and the Regressive Function Theorem of Kanamori and McAloon. Our main aim is to analyze the complexity of the solutions to computable instances of these problems in terms of the Turing degrees and the arithmetical hierarchy. We succeed in giving a sharp characterization for the Canonical Ramsey Theorem for exponent 2 and for the Regressive Function Theorem for all exponents. These results rely heavily on a new, purely inductive, proof of the Canonical Ramsey Theorem. This study also unearths some interesting relationships between these two partition theorems, Ramsey’s Theorem, and Konig’s Lemma. 1
A basis theorem for Π0 1 classes of positive measure and jump inversion for random reals
 Proceedings of the American Mathematical Society
, 2006
"... We extend the Shoenfield jump inversion theorem to the members of any Π0 1 class P⊆2ω with nonzero measure; i.e., for every Σ0 2 set S ≥T ∅ ′, there is a ∆0 2 real A ∈Psuch that A ′ ≡T S. In particular, we get jump inversion for ∆0 2 1random reals. This paper is part of an ongoing program to stud ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
We extend the Shoenfield jump inversion theorem to the members of any Π0 1 class P⊆2ω with nonzero measure; i.e., for every Σ0 2 set S ≥T ∅ ′, there is a ∆0 2 real A ∈Psuch that A ′ ≡T S. In particular, we get jump inversion for ∆0 2 1random reals. This paper is part of an ongoing program to study the relationship between two fundamental notions of complexity for real numbers. The first is the computational complexity of a real as captured, for example, by its Turing degree. The second is the intrinsic randomness of a real. In particular, we are interested in the 1random reals, which were introduced by MartinLöf [13] and represent the most widely studied randomness class. For the purposes of this introduction, we will assume that the reader is somewhat familiar with basic algorithmic randomness, as per LiVitányi [12], and with computability theory [18]. A review of notation and terminology will be given in Section 1. Intuitively, a 1random real is very complex. This complexity can be captured formally in terms of unpredictability or incompressibility, but is it reflected in the