Results 1  10
of
14
On Girard’s “Candidats de Réductibilité
 Logic and Computer Science
, 1990
"... Abstract: We attempt to elucidate the conditions required on Girard’s candidates of reducibility (in French, “candidats de reductibilité”) in order to establish certain properties of various typed lambda calculi, such as strong normalization and ChurchRosser property. We present two generalizations ..."
Abstract

Cited by 33 (5 self)
 Add to MetaCart
Abstract: We attempt to elucidate the conditions required on Girard’s candidates of reducibility (in French, “candidats de reductibilité”) in order to establish certain properties of various typed lambda calculi, such as strong normalization and ChurchRosser property. We present two generalizations of the candidates of reducibility, an untyped version in the line of Tait and Mitchell, and a typed version which is an adaptation of Girard’s original method. As an application of this general result, we give two proofs of strong normalization for the secondorder polymorphic lambda calculus under ⌘reduction (and thus underreduction). We present two sets of conditions for the typed version of the candidates. The first set consists of conditions similar to those used by Stenlund (basically the typed version of Tait’s conditions), and the second set consists of Girard’s original conditions. We also compare these conditions, and prove that Girard’s conditions are stronger than Tait’s conditions. We give a new proof of the ChurchRosser theorem for bothreduction and ⌘reduction, using the modified version of Girard’s method. We also compare various proofs that have appeared in the literature (see section 11). We conclude by sketching the extension of the above results to Girard’s higherorder polymorphic calculus F!, and in appendix 1, to F! with product types. i 1
Lambda calculus with patterns
, 1990
"... The calculus is an extension of the calculus with a pattern matching facility. The form of the argument of a function can be specified and hencecalculus is more convenient than ordinary calculus. We explore the basic theory of calculus, establishing results such as confluence. In doing so, we f ..."
Abstract

Cited by 27 (1 self)
 Add to MetaCart
The calculus is an extension of the calculus with a pattern matching facility. The form of the argument of a function can be specified and hencecalculus is more convenient than ordinary calculus. We explore the basic theory of calculus, establishing results such as confluence. In doing so, we find some requirements for patterns that guarantee confluence. Our work can be seen as giving some foundations for implementations of functional programming languages.
HigherOrder Rewriting
 12th Int. Conf. on Rewriting Techniques and Applications, LNCS 2051
, 1999
"... This paper will appear in the proceedings of the 10th international conference on rewriting techniques and applications (RTA'99). c flSpringer Verlag. ..."
Abstract

Cited by 20 (1 self)
 Add to MetaCart
This paper will appear in the proceedings of the 10th international conference on rewriting techniques and applications (RTA'99). c flSpringer Verlag.
The Longest Perpetual Reductions in Orthogonal Expression Reduction Systems
 In: Proc. of the 3 rd International Conference on Logical Foundations of Computer Science, LFCS'94, A. Nerode and Yu.V. Matiyasevich, eds., Springer LNCS
, 1994
"... We consider reductions in Orthogonal Expression Reduction Systems (OERS), that is, Orthogonal Term Rewriting Systems with bound variables and substitutions, as in the calculus. We design a strategy that for any given term t constructs a longest reduction starting from t if t is strongly normaliza ..."
Abstract

Cited by 18 (8 self)
 Add to MetaCart
We consider reductions in Orthogonal Expression Reduction Systems (OERS), that is, Orthogonal Term Rewriting Systems with bound variables and substitutions, as in the calculus. We design a strategy that for any given term t constructs a longest reduction starting from t if t is strongly normalizable, and constructs an infinite reduction otherwise. The Conservation Theorem for OERSs follows easily from the properties of the strategy. We develop a method for computing the length of a longest reduction starting from a strongly normalizable term. We study properties of pure substitutions and several kinds of similarity of redexes. We apply these results to construct an algorithm for computing lengths of longest reductions in strongly persistent OERSs that does not require actual transformation of the input term. As a corollary, we have an algorithm for computing lengths of longest developments in OERSs. 1 Introduction A strategy is perpetual if, given a term t, it constructs an infinit...
Termination Proofs for Higherorder Rewrite Systems
 IN 1ST INTERNATIONAL WORKSHOP ON HIGHERORDER ALGEBRA, LOGIC AND TERM REWRITING
, 1994
"... This paper deals with termination proofs for HigherOrder Rewrite Systems (HRSs), introduced in [12]. This formalism combines the computational aspects of term rewriting and simply typed lambda calculus. The result is a proof technique for the termination of a HRS, similar to the proof technique "Te ..."
Abstract

Cited by 13 (0 self)
 Add to MetaCart
This paper deals with termination proofs for HigherOrder Rewrite Systems (HRSs), introduced in [12]. This formalism combines the computational aspects of term rewriting and simply typed lambda calculus. The result is a proof technique for the termination of a HRS, similar to the proof technique "Termination by interpretation in a wellfounded monotone algebra", described in [8, 19]. The resulting technique is as follows: Choose a higherorder algebra with operations for each function symbol in the HRS, equipped with some wellfounded partial ordering. The operations must be strictly monotonic in this ordering. This choice generates a model for the HRS. If the choice can be made in such a way that for each rule the interpretation of the left hand side is greater than the interpretation of the right hand side, then the HRS is terminating. At the end of the paper some applications of this technique are given, which show that this technique is natural and can easily be applied.
A Combinatory Logic Approach to Higherorder Eunification
 in Proceedings of the Eleventh International Conference on Automated Deduction, SpringerVerlag LNAI 607
, 1992
"... Let E be a firstorder equational theory. A translation of typed higherorder Eunification problems into a typed combinatory logic framework is presented and justified. The case in which E admits presentation as a convergent term rewriting system is treated in detail: in this situation, a modifi ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
Let E be a firstorder equational theory. A translation of typed higherorder Eunification problems into a typed combinatory logic framework is presented and justified. The case in which E admits presentation as a convergent term rewriting system is treated in detail: in this situation, a modification of ordinary narrowing is shown to be a complete method for enumerating higherorder Eunifiers. In fact, we treat a more general problem, in which the types of terms contain type variables. 1 Introduction Investigation of the interaction between firstorder and higherorder equational reasoning has emerged as an active line of research. The collective import of a recent series of papers, originating with [Bre88] and including (among others) [Bar90], [BG91a], [BG91b], [Dou92], [JO91] and [Oka89], is that when various typed calculi are enriched by firstorder equational theories, the validity problem is wellbehaved, and furthermore that the respective computational approaches to ...
Perpetual Reductions in λCalculus
, 1999
"... This paper surveys a part of the theory of fireduction in calculus which might aptly be called perpetual reductions. The theory is concerned with perpetual reduction strategies, i.e., reduction strategies that compute infinite reduction paths from terms (when possible), and with perpetual red ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
This paper surveys a part of the theory of fireduction in calculus which might aptly be called perpetual reductions. The theory is concerned with perpetual reduction strategies, i.e., reduction strategies that compute infinite reduction paths from terms (when possible), and with perpetual redexes, i.e., redexes whose contraction in terms preserves the possibility (when present) of infinite reduction paths. The survey not only recasts classical theorems in a unified setting, but also offers new results, proofs, and techniques, as well as a number of applications to problems in calculus and type theory. 1. Introduction Considerable attention has been devoted to classification of reduction strategies in typefree calculus [4, 6, 7, 15, 38, 44, 81]see also [2, Ch. 13]. We are concerned with strategies differing in the length of reduction paths. This paper draws on several sources. In late 1994, van Raamsdonk and Severi [59] and Srensen [66, 67] independently developed ...
Perpetuality and Uniform Normalization in Orthogonal Rewrite Systems
 INFORMATION AND COMPUTATION
"... We present two characterizations of perpetual redexes, which are redexes whose contractions retain the possibility of infinite reductions. These characterizations generalize and strengthen existing criteria for the perpetuality of redexes in orthogonal Term Rewriting Systems and the calculus due ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
We present two characterizations of perpetual redexes, which are redexes whose contractions retain the possibility of infinite reductions. These characterizations generalize and strengthen existing criteria for the perpetuality of redexes in orthogonal Term Rewriting Systems and the calculus due to Bergstra and Klop, and others. To unify our results with those in the literature, we introduce Contextsensitive Conditional Expression Reduction Systems (CCERSs) and prove confluence for orthogonal CCERSs. We then define a perpetual onestep reduction strategy which enables one to construct minimal (w.r.t. Levy's permutation ordering on reductions) infinite reductions in orthogonal CCERSs. We then prove (1) perpetuality (in a specific context) of a redex whose contraction does not erase potentially infinite arguments, which are possibly finite (i.e., strongly normalizable) arguments that may become infinite after a number of outside steps, and (2) perpetuality (in every con...
Perpetual Reductions in λCalculus
, 1999
"... This paper surveys a part of the theory of fireduction in λcalculus which might aptly be called perpetual reductions. The theory is concerned with perpetual reduction strategies, i.e., reduction strategies that compute infinite reduction paths from λterms (when possible), and with perpetual r ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
This paper surveys a part of the theory of fireduction in λcalculus which might aptly be called perpetual reductions. The theory is concerned with perpetual reduction strategies, i.e., reduction strategies that compute infinite reduction paths from λterms (when possible), and with perpetual redexes, i.e., redexes whose contraction in λterms preserves the possibility (when present) of infinite reduction paths. The survey not only recasts classical theorems in a unified setting, but also offers new results, proofs, and techniques, as well as a number of applications to problems in λcalculus and type theory.
Effective Longest and Infinite Reduction Paths in Untyped λCalculi
, 1996
"... A maximal reduction strategy in untyped λcalculus computes for a term a longest (finite or infinite) reduction path. Some types of reduction strategies in untyped λcalculus have been studied, but maximal strategies have received less attention. We give a systematic study of maximal strategies, rec ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
A maximal reduction strategy in untyped λcalculus computes for a term a longest (finite or infinite) reduction path. Some types of reduction strategies in untyped λcalculus have been studied, but maximal strategies have received less attention. We give a systematic study of maximal strategies, recasting the few known results in our framework and giving a number of new results, the most important of which is an effective maximal strategy in fij. We also present a number of applications illustrating the relevance and usefulness of maximal strategies.