Results 1 
4 of
4
Standardization and Confluence for a Lambda Calculus with Generalized Applications
, 2000
"... As a minimal environment for the study of permutative reductions an extension LambdaJ of the untyped lambdacalculus is considered. In this nonterminating system with nontrivial critical pairs, conuence is established by studying triangle properties that allow to treat permutative reductions modul ..."
Abstract

Cited by 14 (5 self)
 Add to MetaCart
As a minimal environment for the study of permutative reductions an extension LambdaJ of the untyped lambdacalculus is considered. In this nonterminating system with nontrivial critical pairs, conuence is established by studying triangle properties that allow to treat permutative reductions modularly and could be extended to more complex term systems with permutations. Standardization is shown by means of an inductive definition of standard reduction that closely follows the inductive term structure and captures the intuitive notion of standardness even for permutative reductions.
Termination and confluence of higherorder rewrite systems
 In Proc. RTA ’00, volume 1833 of LNCS
, 2000
"... Abstract: In the last twenty years, several approaches to higherorder rewriting have been proposed, among which Klop’s Combinatory Rewrite Systems (CRSs), Nipkow’s Higherorder Rewrite Systems (HRSs) and Jouannaud and Okada’s higherorder algebraic specification languages, of which only the last on ..."
Abstract

Cited by 14 (8 self)
 Add to MetaCart
Abstract: In the last twenty years, several approaches to higherorder rewriting have been proposed, among which Klop’s Combinatory Rewrite Systems (CRSs), Nipkow’s Higherorder Rewrite Systems (HRSs) and Jouannaud and Okada’s higherorder algebraic specification languages, of which only the last one considers typed terms. The later approach has been extended by Jouannaud, Okada and the present author into Inductive Data Type Systems (IDTSs). In this paper, we extend IDTSs with the CRS higherorder patternmatching mechanism, resulting in simplytyped CRSs. Then, we show how the termination criterion developed for IDTSs with firstorder patternmatching, called the General Schema, can be extended so as to prove the strong normalization of IDTSs with higherorder patternmatching. Next, we compare the unified approach with HRSs. We first prove that the extended General Schema can also be applied to HRSs. Second, we show how Nipkow’s higherorder critical pair analysis technique for proving local confluence can be applied to IDTSs. 1
Oostrom, Uniform normalisation beyond orthogonality
 Proceedings of the Twelfth International Conference on Rewriting Techniques and Applications (RTA ’01), Lecture Notes in Computer Science (2001
, 2001
"... Abstract. A rewrite system is called uniformly normalising if all its steps are perpetual, i.e. are such that if s → t and s has an infinite reduction, then t has one too. For such systems termination (SN) is equivalent to normalisation (WN). A wellknown fact is uniform normalisation of orthogonal ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Abstract. A rewrite system is called uniformly normalising if all its steps are perpetual, i.e. are such that if s → t and s has an infinite reduction, then t has one too. For such systems termination (SN) is equivalent to normalisation (WN). A wellknown fact is uniform normalisation of orthogonal nonerasing term rewrite systems, e.g. the λIcalculus. In the present paper both restrictions are analysed. Orthogonality is seen to pertain to the linear part and nonerasingness to the nonlinear part of rewrite steps. Based on this analysis, a modular proof method for uniform normalisation is presented which allows to go beyond orthogonality. The method is shown applicable to biclosed first and secondorder term rewrite systems as well as to a λcalculus with explicit substitutions. 1