Results 1  10
of
28
Observational logic
 IN ALGEBRAIC METHODOLOGY AND SOFTWARE TECHNOLOGY (AMAST'98
, 1999
"... We present an institution of observational logic suited for statebased systems specifications. The institution is based on the notion of an observational signature (which incorporates the declaration of a distinguished set of observers) and on observational algebras whose operations are required ..."
Abstract

Cited by 60 (10 self)
 Add to MetaCart
(Show Context)
We present an institution of observational logic suited for statebased systems specifications. The institution is based on the notion of an observational signature (which incorporates the declaration of a distinguished set of observers) and on observational algebras whose operations are required to be compatible with the indistinguishability relation determined by the given observers. In particular, we introduce a homomorphism concept for observational algebras which adequately expresses observational relationships between algebras. Then we consider a flexible notion of observational signature morphism which guarantees the satisfaction condition of institutions w.r.t. observational satisfaction of arbitrary firstorder sentences. From the proof theoretical point of view we construct a sound and complete proof system for the observational consequence relation. Then we consider structured observational specifications and we provide a sound and complete proof system for such specifications by using a general, institutionindependent result of [6].
Behavioural Theories and The Proof of Behavioural Properties
, 1996
"... Behavioural theories are a generalization of firstorder theories where the equality predicate symbol is interpreted by a behavioural equality of objects (and not by their identity). In this paper we first consider arbitrary behavioural equalities determined by some (partial) congruence relation and ..."
Abstract

Cited by 37 (8 self)
 Add to MetaCart
Behavioural theories are a generalization of firstorder theories where the equality predicate symbol is interpreted by a behavioural equality of objects (and not by their identity). In this paper we first consider arbitrary behavioural equalities determined by some (partial) congruence relation and we show how to reduce the behavioural theory of any class of algebras to (a subset of) the standard theory of some corresponding class of algebras. This reduction is the basis of a method for proving behavioural theorems whenever an axiomatization of the behavioural equality is provided. Then we focus on the important special case of (partial) observational equalities where two elements are observationally equal if they cannot be distinguished by observable computations over some set of input values. We provide general conditions under which an obvious infinite axiomatization of the observational equality can be replaced by a finitary one and we provide methodological guidelines for finding such...
Observational Proofs with Critical Contexts
 In Fundamental Approaches to Software Engineering
, 1998
"... Observability concepts contribute to a better understanding of software correctness. In order to prove observational properties, the concept of Context Induction has been developed by Hennicker [10]. We propose in this paper to embed Context Induction in the implicit induction framework of [8]. The ..."
Abstract

Cited by 26 (3 self)
 Add to MetaCart
(Show Context)
Observability concepts contribute to a better understanding of software correctness. In order to prove observational properties, the concept of Context Induction has been developed by Hennicker [10]. We propose in this paper to embed Context Induction in the implicit induction framework of [8]. The proof system we obtain applies to conditional specifications. It allows for many rewriting techniques and for the refutation of false observational conjectures. Under reasonable assumptions our method is refutationally complete, i.e. it can refute any conjecture which is not observationally valid. Moreover this proof system is operational: it has been implemented within the Spike prover and interesting computer experiments are reported.
Coalgebra semantics for hidden algebra: parameterized objects and inheritance
 the 12th Workshop on Algebraic Development Techniques
, 1998
"... Abstract. The theory of hidden algebras combines standard algebraic techniques with coalgebraic techniques to provide a semantic foundation for the object paradigm. This paper focuses on the coalgebraic aspect of hidden algebra, concerned with signatures of destructors at the syntactic level and wi ..."
Abstract

Cited by 26 (0 self)
 Add to MetaCart
Abstract. The theory of hidden algebras combines standard algebraic techniques with coalgebraic techniques to provide a semantic foundation for the object paradigm. This paper focuses on the coalgebraic aspect of hidden algebra, concerned with signatures of destructors at the syntactic level and with finality and coffee constructions at the semantic level. Our main result shows the existence of cofree constructions induced by maps between coalgebraic hidden specifications. Their use in giving a semantics to parameterised objects and inheritance is then illustrated. The cofreeness result for hidden algebra is generalised to abstract coalgebra and a universal construction for building object systems over existing subsystems is obtained. Finally, existence of final/cofree constructions for arbitrary hidden specifications is discussed. 1
Inductive Theorem Proving for Design Specifications
 J. Symbolic Computation
, 1997
"... We present a number of new results on inductive theorem proving for design specifications based on Horn logic with equality. Induction is explicit here because induction orderings are supposed to be part of the specification. We show how the automatic support for program verification is enhanced i ..."
Abstract

Cited by 12 (8 self)
 Add to MetaCart
(Show Context)
We present a number of new results on inductive theorem proving for design specifications based on Horn logic with equality. Induction is explicit here because induction orderings are supposed to be part of the specification. We show how the automatic support for program verification is enhanced if the specification satisfies a bunch of rewrite properties, summarized under the notion of canonicity. The enhancement is due to inference rules and corresponding strategies whose soundness is implied by the specification's canonicity. The second main result of the paper provides a method for proving canonicity by using the same rules, which are applied in proofs of conjectures about the specification and the functionallogic programs it contains. Contents 1 Introduction 2 1.1 Expander . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Proof by term rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
A Hidden Herbrand Theorem: Combining the Object and Logic Paradigms
 Principles of Declarative Programming
, 1998
"... : The benefits of the object, logic (or relational), functional, and constraint paradigms ..."
Abstract

Cited by 11 (3 self)
 Add to MetaCart
(Show Context)
: The benefits of the object, logic (or relational), functional, and constraint paradigms
Interconnection of Object Specifications
 Formal Methods and Object Technology
, 1996
"... ing yet further from reality, we might proscribe the simultaneous effect of two or more methods on an object's state; doing so, we impose a monoid structure on the fixed set of methods proper to an object class. Applying methods one after the other corresponds to multiplication in the monoid, a ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
(Show Context)
ing yet further from reality, we might proscribe the simultaneous effect of two or more methods on an object's state; doing so, we impose a monoid structure on the fixed set of methods proper to an object class. Applying methods one after the other corresponds to multiplication in the monoid, and applying no methods corresponds to the identity of the monoid. A monoid is a set M with an associative binary operation ffl M : M \ThetaM ! M , usually referred to as `multiplication', which has an identity element e M 2 M . If M = (M; ffl M ; e M ) is a monoid, we often write just M for M, and e for e M ; moreover for m;m 0 2 M , we usually write mm 0 instead of m ffl M m 0 . For example, A , the set of lists containing elements of A, together with concatenation ++ : A \ThetaA ! A and the empty list [ ] 2 A , is a monoid. This example is especially important for the material in later sections. A monoid homomorphism is a structure preserving map between the carriers of ...
Behavioral institutions and refinements in generalized hidden logics
 J. Univers. Comput. Sci
, 2006
"... Abstract: We investigate behavioral institutions and refinements in the context of the object oriented paradigm. The novelty of our approach is the application of generalized abstract algebraic logic theory of hidden heterogeneous deductive systems (called hidden klogics) to the algebraic specifica ..."
Abstract

Cited by 6 (5 self)
 Add to MetaCart
Abstract: We investigate behavioral institutions and refinements in the context of the object oriented paradigm. The novelty of our approach is the application of generalized abstract algebraic logic theory of hidden heterogeneous deductive systems (called hidden klogics) to the algebraic specification of object oriented programs. This is achieved through the Leibniz congruence relation and its combinatorial properties. We reformulate the notion of hidden klogic as well as the behavioral logic of a hidden klogic as institutions. We define refinements as hidden signature morphisms having the extra property of preserving logical consequence. A stricter class of refinements, the ones that preserve behavioral consequence, is studied. We establish sufficient conditions for an ordinary signature morphism to be a behavioral refinement.
Tossing Algebraic Flowers down the Great Divide
 In People and Ideas in Theoretical Computer Science
, 1999
"... Data Types and Algebraic Semantics The history of programming languages, and to a large extent of software engineering as a whole, can be seen as a succession of ever more powerful abstraction mechanisms. The first stored program computers were programmed in binary, which soon gave way to assembly l ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
(Show Context)
Data Types and Algebraic Semantics The history of programming languages, and to a large extent of software engineering as a whole, can be seen as a succession of ever more powerful abstraction mechanisms. The first stored program computers were programmed in binary, which soon gave way to assembly languages that allowed symbolic codes for operations and addresses. fortran began the spread of "high level" programming languages, though at the time it was strongly opposed by many assembly programmers; important features that developed later include blocks, recursive procedures, flexible types, classes, inheritance, modules, and genericity. Without going into the philosophical problems raised by abstraction (which in view of the discussion of realism in Section 4 may be considerable), it seems clear that the mathematics used to describe programming concepts should in general get more abstract as the programming concepts get more abstract. Nevertheless, there has been great resistance to u...