Results 1 
4 of
4
Emulation of a FMA and CorrectlyRounded Sums: Proved Algorithms Using Rounding to Odd
 IEEE Trans. Computers
, 2008
"... Rounding to odd is a nonstandard rounding on floatingpoint numbers. By using it for some intermediate values instead of rounding to nearest, correctly rounded results can be obtained at the end of computations. We present an algorithm to emulate the fused multiplyandadd operator. We also present ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
Rounding to odd is a nonstandard rounding on floatingpoint numbers. By using it for some intermediate values instead of rounding to nearest, correctly rounded results can be obtained at the end of computations. We present an algorithm to emulate the fused multiplyandadd operator. We also present an iterative algorithm for computing the correctly rounded sum of a set floatingpoint numbers under mild assumptions. A variation on both previous algorithms is the correctly rounded sum of any three floatingpoint numbers. This leads to efficient implementations, even when this rounding is not available. In order to guarantee the correctness of these properties and algorithms, we formally proved them using the Coq proof checker.
Automatic Generation of Staged Geometric Predicates
, 2002
"... Algorithms in Computational Geometry and Computer Aided Design are often developed for the Real RAM model of computation, which assumes exactness of all the input arguments and operations. In practice, however, the exactness imposes tremendous limitations on the algorithms – even the basic operation ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
Algorithms in Computational Geometry and Computer Aided Design are often developed for the Real RAM model of computation, which assumes exactness of all the input arguments and operations. In practice, however, the exactness imposes tremendous limitations on the algorithms – even the basic operations become uncomputable, or prohibitively slow. In some important cases, however, the computations of interest are limited to determining the sign of polynomial expressions. In such circumstances, a faster approach is available: one can evaluate the polynomial in floating point first, together with some estimate of the rounding error, and fall back to exact arithmetic only if this error is too big to determine the sign reliably. A particularly efficient variation on this approach has been used by Shewchuk in his robust implementations of Orient and InSphere geometric predicates. We extend Shewchuk’s method to arbitrary polynomial expressions. The expressions are given as programs in a suitable source language featuring basic arithmetic operations of addition, subtraction, multiplication and squaring, which are to be perceived by the programmer as exact. The source language also allows for anonymous