Results 1  10
of
341
Constraint Networks
, 1992
"... Constraintbased reasoning is a paradigm for formulating knowledge as a set of constraints without specifying the method by which these constraints are to be satisfied. A variety of techniques have been developed for finding partial or complete solutions for different kinds of constraint expression ..."
Abstract

Cited by 948 (42 self)
 Add to MetaCart
Constraintbased reasoning is a paradigm for formulating knowledge as a set of constraints without specifying the method by which these constraints are to be satisfied. A variety of techniques have been developed for finding partial or complete solutions for different kinds of constraint expressions. These have been successfully applied to diverse tasks such as design, diagnosis, truth maintenance, scheduling, spatiotemporal reasoning, logic programming and user interface. Constraint networks are graphical representations used to guide strategies for solving constraint satisfaction problems (CSPs).
On the Hardness of Approximate Reasoning
, 1996
"... Many AI problems, when formalized, reduce to evaluating the probability that a propositional expression is true. In this paper we show that this problem is computationally intractable even in surprisingly restricted cases and even if we settle for an approximation to this probability. We consider va ..."
Abstract

Cited by 219 (13 self)
 Add to MetaCart
Many AI problems, when formalized, reduce to evaluating the probability that a propositional expression is true. In this paper we show that this problem is computationally intractable even in surprisingly restricted cases and even if we settle for an approximation to this probability. We consider various methods used in approximate reasoning such as computing degree of belief and Bayesian belief networks, as well as reasoning techniques such as constraint satisfaction and knowledge compilation, that use approximation to avoid computational difficulties, and reduce them to modelcounting problems over a propositional domain. We prove that counting satisfying assignments of propositional languages is intractable even for Horn and monotone formulae, and even when the size of clauses and number of occurrences of the variables are extremely limited. This should be contrasted with the case of deductive reasoning, where Horn theories and theories with binary clauses are distinguished by the e...
Consistency techniques for numeric csps
, 1993
"... Many problems can be expressed in terms of a numeric constraint satisfaction problem over finite or continuous domains (numeric CSP). The purpose of this paper is to show that the consistency techniques that have been developed for CSPs can be adapted to numeric CSPs. Since the numeric domains are o ..."
Abstract

Cited by 201 (7 self)
 Add to MetaCart
Many problems can be expressed in terms of a numeric constraint satisfaction problem over finite or continuous domains (numeric CSP). The purpose of this paper is to show that the consistency techniques that have been developed for CSPs can be adapted to numeric CSPs. Since the numeric domains are ordered the underlying idea is to handle domains only by their bounds. The semantics that have been elaborated, plus the complexity analysis and good experimental results, confirm that these techniques can be used in real applications. 1
A Generic ArcConsistency Algorithm and its Specializations
 Artificial Intelligence
, 1992
"... Consistency techniques have been studied extensively in the past as a way of tackling constraint satisfaction problems (CSP). In particular, various arcconsistency algorithms have been proposed, originating from Waltz's filtering algorithm [26] and culminating in the optimal algorithm AC4 of Mohr ..."
Abstract

Cited by 192 (7 self)
 Add to MetaCart
Consistency techniques have been studied extensively in the past as a way of tackling constraint satisfaction problems (CSP). In particular, various arcconsistency algorithms have been proposed, originating from Waltz's filtering algorithm [26] and culminating in the optimal algorithm AC4 of Mohr and Henderson [15]. AC4 runs in O(ed 2 ) in the worst case, where e is the number of arcs (or constraints) and d is the size of the largest domain. Being applicable to the whole class of (binary) CSP, these algorithms do not take into account the semantics of constraints. In this paper, we present a new generic arcconsistency algorithm AC5. This algorithm is parametrized on two specified procedures and can be instantiated to reduce to AC3 and AC4. More important, AC5 can be instantiated to produce an O(ed) algorithm for a number of important classes of constraints: functional, antifunctional, monotonic and their generalization to (functional, antifunctional, and monotonic) piecewise constraints. We also show that AC5 has an important application in constraint logic programming over finite domains [23]. The kernel of the constraint solver for such a programming language is an arcconsistency algorithm for a set of basic constraints. We prove that AC5, in conjunction with node consistency, provides a decision procedure for these constraints running in time O(ed).
Numerica: a Modeling Language for Global Optimization
, 1997
"... Introduction Many science and engineering applications require the user to find solutions to systems of nonlinear constraints over real numbers or to optimize a nonlinear function subject to nonlinear constraints. This includes applications such the modeling of chemical engineering processes and of ..."
Abstract

Cited by 170 (11 self)
 Add to MetaCart
Introduction Many science and engineering applications require the user to find solutions to systems of nonlinear constraints over real numbers or to optimize a nonlinear function subject to nonlinear constraints. This includes applications such the modeling of chemical engineering processes and of electrical circuits, robot kinematics, chemical equilibrium problems, and design problems (e.g., nuclear reactor design). The field of global optimization is the study of methods to find all solutions to systems of nonlinear constraints and all global optima to optimization problems. Nonlinear problems raise many issues from a computation standpoint. On the one hand, deciding if a set of polynomial constraints has a solution is NPhard. In fact, Canny [ Canny, 1988 ] and Renegar [ Renegar, 1988 ] have shown that the problem is in PSPACE and it is not known whether the problem lies in NP. Nonlinear programming problems can be so hard that some methods are designed only to solve probl
Applying interval arithmetic to real, integer and Boolean constraints
 JOURNAL OF LOGIC PROGRAMMING
, 1997
"... We present in this paper a general narrowing algorithm, based on relational interval arithmetic, which applies to any nary relation on!. The main idea is to define, for every such relation ae, a narrowing function \Gamma! ae based on the approximation of ae by a block which is the cartesian product ..."
Abstract

Cited by 168 (19 self)
 Add to MetaCart
We present in this paper a general narrowing algorithm, based on relational interval arithmetic, which applies to any nary relation on!. The main idea is to define, for every such relation ae, a narrowing function \Gamma! ae based on the approximation of ae by a block which is the cartesian product of intervals. We then show how, under certain conditions, one can compute the narrowing function of relations defined in terms of unions and intersections of simpler relations. We apply the use of the narrowing algorithm, which is the core of the CLP language BNRProlog, to integer and disequality constraints, to boolean constraints and to relations mixing numerical and boolean values. The result is a language, called CLP(BNR), where constraints are expressed in a unique structure, allowing the mixing of real numbers, integers and booleans. We end by the presentation of several examples showing the advantages of such approach from the point of view of the expressiveness, and give some computational results from a first prototype
Reasoning about Temporal Relations: A Maximal Tractable Subclass of Allen's Interval Algebra
 Journal of the ACM
, 1995
"... We introduce a new subclass of Allen's interval algebra we call "ORDHorn subclass," which is a strict superset of the "pointisable subclass." We prove that reasoning in the ORDHorn subclass is a polynomialtime problem and show that the pathconsistency method is sufficient for deciding satisfiabil ..."
Abstract

Cited by 161 (9 self)
 Add to MetaCart
We introduce a new subclass of Allen's interval algebra we call "ORDHorn subclass," which is a strict superset of the "pointisable subclass." We prove that reasoning in the ORDHorn subclass is a polynomialtime problem and show that the pathconsistency method is sufficient for deciding satisfiability. Further, using an extensive machinegenerated case analysis, we show that the ORDHorn subclass is a maximal tractable subclass of the full algebra (assuming<F NaN> P6=NP). In fact, it is the unique greatest tractable subclass amongst the subclasses that contain all basic relations. This work has been supported by the German Ministry for Research and Technology (BMFT) under grant ITW 8901 8 as part of the WIP project and under grant ITW 9201 as part of the TACOS project. 1 1 Introduction Temporal information is often conveyed qualitatively by specifying the relative positions of time intervals such as ". . . point to the figure while explaining the performance of the system . . . "...
Improvements To Propositional Satisfiability Search Algorithms
, 1995
"... ... quickly across a wide range of hard SAT problems than any other SAT tester in the literature on comparable platforms. On a Sun SPARCStation 10 running SunOS 4.1.3 U1, POSIT can solve hard random 400variable 3SAT problems in about 2 hours on the average. In general, it can solve hard nvariable ..."
Abstract

Cited by 161 (0 self)
 Add to MetaCart
... quickly across a wide range of hard SAT problems than any other SAT tester in the literature on comparable platforms. On a Sun SPARCStation 10 running SunOS 4.1.3 U1, POSIT can solve hard random 400variable 3SAT problems in about 2 hours on the average. In general, it can solve hard nvariable random 3SAT problems with search trees of size O(2 n=18:7 ). In addition to justifying these claims, this dissertation describes the most significant achievements of other researchers in this area, and discusses all of the widely known general techniques for speeding up SAT search algorithms. It should be useful to anyone interested in NPcomplete problems or combinatorial optimization in general, and it should be particularly useful to researchers in either Artificial Intelligence or Operations Research.
SemiringBased Constraint Satisfaction and Optimization
 JOURNAL OF THE ACM
, 1997
"... We introduce a general framework for constraint satisfaction and optimization where classical CSPs, fuzzy CSPs, weighted CSPs, partial constraint satisfaction, and others can be easily cast. The framework is based on a semiring structure, where the set of the semiring specifies the values to be asso ..."
Abstract

Cited by 159 (20 self)
 Add to MetaCart
We introduce a general framework for constraint satisfaction and optimization where classical CSPs, fuzzy CSPs, weighted CSPs, partial constraint satisfaction, and others can be easily cast. The framework is based on a semiring structure, where the set of the semiring specifies the values to be associated with each tuple of values of the variable domain, and the two semiring operations (1 and 3) model constraint projection and combination respectively. Local consistency algorithms, as usually used for classical CSPs, can be exploited in this general framework as well, provided that certain conditions on the semiring operations are satisfied. We then show how this framework can be used to model both old and new constraint solving and optimization schemes, thus allowing one to both formally justify many informally taken choices in existing schemes, and to prove that local consistency techniques can be used also in newly defined schemes.
Combining Qualitative and Quantitative Constraints in Temporal Reasoning
 Artificial Intelligence
, 1996
"... This paper presents a general model for temporal reasoning that is capable of handling both qualitative and quantitative information. This model allows the representation and processing of many types of constraints discussed in the literature to date, including metric constraints (restricting the ..."
Abstract

Cited by 139 (0 self)
 Add to MetaCart
This paper presents a general model for temporal reasoning that is capable of handling both qualitative and quantitative information. This model allows the representation and processing of many types of constraints discussed in the literature to date, including metric constraints (restricting the distance between time points) and qualitative, disjunctive constraints (specifying the relative position of temporal objects). Reasoning tasks in this unified framework are formulated as constraint satisfaction problems and are solved by traditional constraint satisfaction techniques, such as backtracking and path consistency. New classes of tractable problems are characterized, involving qualitative networks augmented by quantitative domain constraints, some of which can be solved in polynomial time using arc and path consistency. This work was supported in part by grants from the Air Force Office of Scientific Research, AFOSR 900136, and the National Science Foundation, IRI 8815522...