Results 1 
3 of
3
Noncommutative Riemann integration and NovikovShubin invariants for Open Manifolds
, 2001
"... Given a C ∗algebra A with a semicontinuous semifinite trace τ acting on the Hilbert space H, we define the family A R of bounded Riemann measurable elements w.r.t. τ as a suitable closure, à la Dedekind, of A, in analogy with one of the classical characterizations of Riemann measurable functions [2 ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
Given a C ∗algebra A with a semicontinuous semifinite trace τ acting on the Hilbert space H, we define the family A R of bounded Riemann measurable elements w.r.t. τ as a suitable closure, à la Dedekind, of A, in analogy with one of the classical characterizations of Riemann measurable functions [26], and show that A R is a C ∗algebra, and τ extends to a semicontinuous semifinite trace on A R. Then, unbounded Riemann measurable operators are defined as the closed operators on H which are affiliated to A ′′ and can be approximated in measure by operators in A R, in analogy with unbounded Riemann integration. Unbounded Riemann measurable operators form a τa.e. bimodule on A R, denoted by A R, and such bimodule contains the functional calculi of selfadjoint elements of A R under unbounded Riemann measurable functions. Besides, τ extends to a bimodule trace on A R.
Noncommutative Riemann integration and singular traces for C ∗  algebras
"... Given a C ∗algebra A with a semicontinuous semifinite trace τ acting on the Hilbert space H, we define the family A R of bounded Riemann measurable elements w.r.t. τ as a suitable closure, à la Dedekind, of A, in analogy with one of the classical characterizations of Riemann measurable functions [1 ..."
Abstract

Cited by 4 (4 self)
 Add to MetaCart
Given a C ∗algebra A with a semicontinuous semifinite trace τ acting on the Hilbert space H, we define the family A R of bounded Riemann measurable elements w.r.t. τ as a suitable closure, à la Dedekind, of A, in analogy with one of the classical characterizations of Riemann measurable functions [16], and show that A R is a C ∗algebra, and τ extends to a semicontinuous semifinite trace on A R. Then, unbounded Riemann measurable operators are defined as the closed operators on H which are affiliated to A ′′ and can be approximated in measure by operators in A R, in analogy with improper Riemann integration. Unbounded Riemann measurable operators form a τa.e. bimodule on A R, denoted by AR, and such bimodule contains the functional calculi of selfadjoint elements of A R under unbounded Riemann measurable functions. Besides, τ extends to a bimodule trace on AR. As type II1 singular traces for a semifinite von Neumann algebra M with a normal semifinite faithful (nonatomic) trace τ have been defined as traces on M − Mbimodules of unbounded τmeasurable operators [5], type II1 singular traces for a C ∗algebra A with a semicontinuous semifinite (nonatomic) trace τ are defined here as traces on A − Abimodules of unbounded Riemann measurable operators (in AR) for any faithful representation of A. An application of singular traces for C ∗algebras is contained in [6].
Some Recent Results on Adjoint Semigroups
, 1993
"... Introduction A C 0 semigroup of linear operators on a Banach space X is a family T = fT (t)g t0 of bounded linear operators on X which satisfies [(S1)] T (0) = I ; [(S2)] T (s)T (t) = T (s + t) for all s; t 0: [(S3)] lim t#0 kT (t)x \Gamma xk = 0 for all x 2 X: The generator of T is the lin ..."
Abstract
 Add to MetaCart
Introduction A C 0 semigroup of linear operators on a Banach space X is a family T = fT (t)g t0 of bounded linear operators on X which satisfies [(S1)] T (0) = I ; [(S2)] T (s)T (t) = T (s + t) for all s; t 0: [(S3)] lim t#0 kT (t)x \Gamma xk = 0 for all x 2 X: The generator of T is the linear operator A with domain D(A) defined by D(A) := fx 2 X : li