Results 1 - 10
of
28
Multisector models
- In Handbook of Development Economics, eds., H. Chenery and T.N. Srinivasan
, 1989
"... To the best of my knowledge, this thesis contains no copy or paraphrase of work published by another person, except where duly acknowledged in the text. This thesis contains no material which has been presented for a degree at the University of Sydney or any other university. ..."
Abstract
-
Cited by 87 (10 self)
- Add to MetaCart
(Show Context)
To the best of my knowledge, this thesis contains no copy or paraphrase of work published by another person, except where duly acknowledged in the text. This thesis contains no material which has been presented for a degree at the University of Sydney or any other university.
A neural mass model for MEG/EEG: coupling and neuronal dynamics
- NeuroImage
, 2003
"... Although MEG/EEG signals are highly variable, systematic changes in distinct frequency bands are commonly encountered. These frequency-specific changes represent robust neural correlates of cognitive or perceptual processes (for example, alpha rhythms emerge on closing the eyes). However, their func ..."
Abstract
-
Cited by 81 (21 self)
- Add to MetaCart
Although MEG/EEG signals are highly variable, systematic changes in distinct frequency bands are commonly encountered. These frequency-specific changes represent robust neural correlates of cognitive or perceptual processes (for example, alpha rhythms emerge on closing the eyes). However, their functional significance remains a matter of debate. Some of the mechanisms that generate these signals are known at the cellular level and rest on a balance of excitatory and inhibitory interactions within and between populations of neurons. The kinetics of the ensuing population dynamics determine the frequency of oscillations. In this work we extended the classical nonlinear lumped-parameter model of alpha rhythms, initially developed by Lopes da Silva and colleagues [Kybernetik 15 (1974) 27], to generate more complex dynamics. We show that the whole spectrum of MEG/EEG signals can be reproduced within the oscillatory regime of this model by simply changing the population kinetics. We used the model to examine the influence of coupling strength and propagation delay on the rhythms generated by coupled cortical areas. The main findings were that (1) coupling induces phase-locked activity, with a phase shift of 0 or π when the coupling is bidirectional, and (2) both coupling and propagation delay are critical determinants of the MEG/EEG spectrum. In forthcoming articles, we will use this model to (1) estimate how neuronal interactions are expressed in MEG/EEG oscillations and establish the construct validity of various indices of nonlinear coupling, and (2) generate event-related transients to derive physiologically informed basis functions for statistical modelling of average evoked responses.
Dynamic causal modelling of evoked responses in eeg/meg with lead-field parameterization. Under revision
, 2005
"... Neuronally plausible, generative or forward models are essential for understanding how event-related fields (ERFs) and potentials (ERPs) are generated. In this paper, we present a new approach to modeling event-related responses measured with EEG or MEG. This approach uses a biologically informed mo ..."
Abstract
-
Cited by 48 (18 self)
- Add to MetaCart
(Show Context)
Neuronally plausible, generative or forward models are essential for understanding how event-related fields (ERFs) and potentials (ERPs) are generated. In this paper, we present a new approach to modeling event-related responses measured with EEG or MEG. This approach uses a biologically informed model to make inferences about the underlying neuronal networks generating responses. The approach can be regarded as a neurobiologically constrained source reconstruction scheme, in which the parameters of the reconstruction have an explicit neuronal interpretation. Specifically, these parameters encode, among other things, the coupling among sources and how that coupling depends upon stimulus attributes or experimental context. The basic idea is to supplement conventional electromagnetic forward models, of how sources are expressed in measurement space, with a model of how source activity is generated by neuronal dynamics. A single inversion of this extended forward model enables inference about both the spatial deployment of sources and the underlying neuronal architecture generating them. Critically, this inference covers long-range connections among well-defined neuronal subpopulations. In a previous paper, we simulated ERPs using a hierarchical neural-mass model that embodied bottom-up, top-down and lateral connections among remote regions. In this paper, we describe a Bayesian procedure to estimate the parameters of this model using empirical data. We demonstrate this procedure by characterizing the role of changes in cortico-cortical coupling, in the genesis of ERPs. In the first experiment, ERPs recorded during the perception of faces and houses were modeled as distinct cortical sources in the ventral visual pathway. Category-selectivity, as indexed by the face-Abbreviations: DCM, dynamic causal Model(ing); EEG, electroencephalography; ERF, event-related field; ERP, event-related potential;
Modelling event-related responses in the brain
- NeuroImage
, 2005
"... The aim of this work was to investigate the mechanisms that shape evoked electroencephalographic (EEG) and magneto-encephalographic (MEG) responses. We used a neuronally plausible model to characterise the dependency of response components on the models parameters. This generative model was a neural ..."
Abstract
-
Cited by 38 (9 self)
- Add to MetaCart
(Show Context)
The aim of this work was to investigate the mechanisms that shape evoked electroencephalographic (EEG) and magneto-encephalographic (MEG) responses. We used a neuronally plausible model to characterise the dependency of response components on the models parameters. This generative model was a neural mass model of hierarchically arranged areas using three kinds of inter-area connections (forward, backward and lateral). We investigated how responses, at each level of a cortical hierarchy, depended on the strength of connections or coupling. Our strategy was to systematically add connections and examine the responses of each successive architecture. We did this in the context of deterministic responses and then with stochastic spontaneous activity. Our aim was to show, in a simple way, how event-related dynamics depend on extrinsic connectivity. To emphasise the importance of nonlinear interactions, we tried to disambiguate the components of event-related potentials (ERPs) or event-related fields
Final review of U.S
- Army Fire Resistant Fuel Program. Interm Report BFLRF
, 1987
"... Characterizing healthy samples for studies of human cognitive aging ..."
Abstract
-
Cited by 19 (1 self)
- Add to MetaCart
(Show Context)
Characterizing healthy samples for studies of human cognitive aging
Mechanisms of evoked and induced responses in MEG/EEG
- NeuroImage
"... Cortical responses, recorded by electroencephalography and magnetoencephalography, can be characterized in the time domain, to study event-related potentials/fields, or in the time – frequency domain, to study oscillatory activity. In the literature, there is a common conception that evoked, induced ..."
Abstract
-
Cited by 9 (2 self)
- Add to MetaCart
(Show Context)
Cortical responses, recorded by electroencephalography and magnetoencephalography, can be characterized in the time domain, to study event-related potentials/fields, or in the time – frequency domain, to study oscillatory activity. In the literature, there is a common conception that evoked, induced, and on-going oscillations reflect different neuronal processes and mechanisms. In this work, we consider the relationship between the mechanisms generating neuronal transients and how they are expressed in terms of evoked and induced power. This relationship is addressed using a neuronally realistic model of interacting neuronal subpopulations. Neuronal transients were generated by changing neuronal input (a dynamic mechanism) or by perturbing the systems coupling parameters (a structural mechanism) to produce induced responses. By applying conventional time – frequency analyses, we show that, in contradistinction to common conceptions, induced and evoked oscillations are perhaps more related than previously reported. Specifically, structural mechanisms normally associated with induced responses can be expressed in evoked power. Conversely, dynamic mechanisms posited for evoked responses can induce responses, if there is variation in neuronal input. We conclude, it may be better to consider evoked responses as the results of mixed dynamic and structural effects. We introduce adjusted power to complement induced power. Adjusted power is unaffected by trial-totrial variations in input and can be attributed to structural perturbations without ambiguity. D 2006 Elsevier Inc. All rights reserved.
Population dynamics: Variance and the sigmoid activation function
- NEUROIMAGE 42 (2008) 147–157
, 2008
"... ..."
Dynamic Moment Analysis of the Extracellular Electric Field of a Biologically Realistic Spiking Neuron
, 2008
"... Based upon the membrane currents generated by an action potential in 1 a biologically realistic model of a pyramidal, hippocampal cell within rat CA1, we perform a moment expansion of the extracellular field potential. We decompose the potential into both inverse and classical moments and show that ..."
Abstract
-
Cited by 2 (0 self)
- Add to MetaCart
(Show Context)
Based upon the membrane currents generated by an action potential in 1 a biologically realistic model of a pyramidal, hippocampal cell within rat CA1, we perform a moment expansion of the extracellular field potential. We decompose the potential into both inverse and classical moments and show that this method is a rapid and efficient way to calculate the extracellular field both near and far from the cell body. The action potential gives rise to a large quadrupole moment that contributes to the extracellular field up to distances of almost 1 cm. This method will serve as a starting point in connecting the microscopic generation of electric fields at the level of neurons to macroscopic observables such as the local field potential. 1
Generation and control of cortical gamma: findings from simulation at two scales.
"... Abstract. A continuum model of electrocortical activity was applied separately at centimetric and macrocolumnar scales, permitting analysis of interaction between scales. State equations included effects of retrograde action potential propagation in dendritic trees, and kinetics of AMPA, GABA and NM ..."
Abstract
-
Cited by 2 (1 self)
- Add to MetaCart
(Show Context)
Abstract. A continuum model of electrocortical activity was applied separately at centimetric and macrocolumnar scales, permitting analysis of interaction between scales. State equations included effects of retrograde action potential propagation in dendritic trees, and kinetics of AMPA, GABA and NMDA receptors. Parameter values were provided from independent physiological and anatomical estimates. Realistic field potentials and pulse rates were obtained, including resonances in the alpha/theta and gamma ranges, 1 / background activity, and autonomous gamma activity. Zero-lag synchrony and travelling waves occurred as complementary aspects of cortical transmission, and lead/lag relations between excitatory and inhibitory cell populations varied systematically around transition to autonomous gamma oscillation. f 2 Properties of the simulations can account for generation and control of gamma activity. All factors acting on excitatory/inhibitory balance controlled the onset and offset of gamma oscillation. Autonomous gamma was initiated by focal excitation of excitatory cells, and suppressed by laterally spreading trans-cortical excitation, which acted on both excitatory and inhibitory cell populations. Consequently, although spatially extensive non-specific reticular activation tended to suppress autonomous gamma, spatial variation of reticular activation could preferentially select fields of synchrony.