Results 1 - 10
of
130
A theory of cortical responses
, 2005
"... This article concerns the nature of evoked brain responses and the principles underlying their generation. We start with the premise that the sensory brain has evolved to represent or infer the causes of changes in its sensory inputs. The problem of inference is well formulated in statistical terms. ..."
Abstract
-
Cited by 260 (30 self)
- Add to MetaCart
This article concerns the nature of evoked brain responses and the principles underlying their generation. We start with the premise that the sensory brain has evolved to represent or infer the causes of changes in its sensory inputs. The problem of inference is well formulated in statistical terms. The statistical fundaments of inference may therefore afford important constraints on neuronal implementation. By formulating the original ideas of Helmholtz on perception, in terms of modern-day statistical theories, one arrives at a model of perceptual inference and learning that can explain a remarkable range of neurobiological facts. It turns out that the problems of inferring the causes of sensory input (perceptual inference) and learning the relationship between input and cause (perceptual learning) can be resolved using exactly the same principle. Specifically, both inference and learning rest on minimizing the brain’s free energy, as defined in statistical physics. Furthermore, inference and learning can proceed in a biologically plausible fashion. Cortical responses can be seen as the brain’s attempt to minimize the free energy induced by a stimulus and thereby encode the most likely cause of that stimulus. Similarly, learning emerges from changes in synaptic efficacy that minimize the free energy, averaged over all stimuli encountered. The underlying scheme rests on empirical Bayes and hierarchical models
Nonlinear Multivariate Analysis of Neurophysiological Signals
- Progress in Neurobiology
, 2005
"... Multivariate time series analysis is extensively used in neurophysiology with the aim of studying the relationship between simultaneously recorded signals. Recently, advances on information theory and nonlinear dynamical systems theory have allowed the study of various types of synchronization from ..."
Abstract
-
Cited by 107 (5 self)
- Add to MetaCart
Multivariate time series analysis is extensively used in neurophysiology with the aim of studying the relationship between simultaneously recorded signals. Recently, advances on information theory and nonlinear dynamical systems theory have allowed the study of various types of synchronization from time series. In this work, we first describe the multivariate linear methods most commonly used in neurophysiology and show that they can be extended to assess the existence of nonlinear interdependences between signals. We then review the concepts of entropy and mutual information followed by a detailed description of nonlinear methods based on the concepts of phase synchronization, generalized synchronization and event synchronization. In all cases, we show how to apply these methods to study different kinds of neurophysiological data. Finally, we illustrate the use of multivariate surrogate data test for the assessment of the strength (strong or weak) and the type (linear or nonlinear) of interdependence between neurophysiological signals.
Multisector models
- In Handbook of Development Economics, eds., H. Chenery and T.N. Srinivasan
, 1989
"... To the best of my knowledge, this thesis contains no copy or paraphrase of work published by another person, except where duly acknowledged in the text. This thesis contains no material which has been presented for a degree at the University of Sydney or any other university. ..."
Abstract
-
Cited by 87 (10 self)
- Add to MetaCart
(Show Context)
To the best of my knowledge, this thesis contains no copy or paraphrase of work published by another person, except where duly acknowledged in the text. This thesis contains no material which has been presented for a degree at the University of Sydney or any other university.
A neural mass model for MEG/EEG: coupling and neuronal dynamics
- NeuroImage
, 2003
"... Although MEG/EEG signals are highly variable, systematic changes in distinct frequency bands are commonly encountered. These frequency-specific changes represent robust neural correlates of cognitive or perceptual processes (for example, alpha rhythms emerge on closing the eyes). However, their func ..."
Abstract
-
Cited by 81 (21 self)
- Add to MetaCart
Although MEG/EEG signals are highly variable, systematic changes in distinct frequency bands are commonly encountered. These frequency-specific changes represent robust neural correlates of cognitive or perceptual processes (for example, alpha rhythms emerge on closing the eyes). However, their functional significance remains a matter of debate. Some of the mechanisms that generate these signals are known at the cellular level and rest on a balance of excitatory and inhibitory interactions within and between populations of neurons. The kinetics of the ensuing population dynamics determine the frequency of oscillations. In this work we extended the classical nonlinear lumped-parameter model of alpha rhythms, initially developed by Lopes da Silva and colleagues [Kybernetik 15 (1974) 27], to generate more complex dynamics. We show that the whole spectrum of MEG/EEG signals can be reproduced within the oscillatory regime of this model by simply changing the population kinetics. We used the model to examine the influence of coupling strength and propagation delay on the rhythms generated by coupled cortical areas. The main findings were that (1) coupling induces phase-locked activity, with a phase shift of 0 or π when the coupling is bidirectional, and (2) both coupling and propagation delay are critical determinants of the MEG/EEG spectrum. In forthcoming articles, we will use this model to (1) estimate how neuronal interactions are expressed in MEG/EEG oscillations and establish the construct validity of various indices of nonlinear coupling, and (2) generate event-related transients to derive physiologically informed basis functions for statistical modelling of average evoked responses.
Dynamic causal modelling of evoked responses
- in EEG and MEG. NeuroImage
"... EEG/MEG with lead field parameterization ..."
Dynamic causal modelling of evoked responses in eeg/meg with lead-field parameterization. Under revision
, 2005
"... Neuronally plausible, generative or forward models are essential for understanding how event-related fields (ERFs) and potentials (ERPs) are generated. In this paper, we present a new approach to modeling event-related responses measured with EEG or MEG. This approach uses a biologically informed mo ..."
Abstract
-
Cited by 48 (18 self)
- Add to MetaCart
(Show Context)
Neuronally plausible, generative or forward models are essential for understanding how event-related fields (ERFs) and potentials (ERPs) are generated. In this paper, we present a new approach to modeling event-related responses measured with EEG or MEG. This approach uses a biologically informed model to make inferences about the underlying neuronal networks generating responses. The approach can be regarded as a neurobiologically constrained source reconstruction scheme, in which the parameters of the reconstruction have an explicit neuronal interpretation. Specifically, these parameters encode, among other things, the coupling among sources and how that coupling depends upon stimulus attributes or experimental context. The basic idea is to supplement conventional electromagnetic forward models, of how sources are expressed in measurement space, with a model of how source activity is generated by neuronal dynamics. A single inversion of this extended forward model enables inference about both the spatial deployment of sources and the underlying neuronal architecture generating them. Critically, this inference covers long-range connections among well-defined neuronal subpopulations. In a previous paper, we simulated ERPs using a hierarchical neural-mass model that embodied bottom-up, top-down and lateral connections among remote regions. In this paper, we describe a Bayesian procedure to estimate the parameters of this model using empirical data. We demonstrate this procedure by characterizing the role of changes in cortico-cortical coupling, in the genesis of ERPs. In the first experiment, ERPs recorded during the perception of faces and houses were modeled as distinct cortical sources in the ventral visual pathway. Category-selectivity, as indexed by the face-Abbreviations: DCM, dynamic causal Model(ing); EEG, electroencephalography; ERF, event-related field; ERP, event-related potential;
Modelling event-related responses in the brain
- NeuroImage
, 2005
"... The aim of this work was to investigate the mechanisms that shape evoked electroencephalographic (EEG) and magneto-encephalographic (MEG) responses. We used a neuronally plausible model to characterise the dependency of response components on the models parameters. This generative model was a neural ..."
Abstract
-
Cited by 38 (9 self)
- Add to MetaCart
(Show Context)
The aim of this work was to investigate the mechanisms that shape evoked electroencephalographic (EEG) and magneto-encephalographic (MEG) responses. We used a neuronally plausible model to characterise the dependency of response components on the models parameters. This generative model was a neural mass model of hierarchically arranged areas using three kinds of inter-area connections (forward, backward and lateral). We investigated how responses, at each level of a cortical hierarchy, depended on the strength of connections or coupling. Our strategy was to systematically add connections and examine the responses of each successive architecture. We did this in the context of deterministic responses and then with stochastic spontaneous activity. Our aim was to show, in a simple way, how event-related dynamics depend on extrinsic connectivity. To emphasise the importance of nonlinear interactions, we tried to disambiguate the components of event-related potentials (ERPs) or event-related fields
A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs
, 2009
"... ..."
Dynamic causal modelling of evoked potentials: a reproducibility study
- NeuroImage
, 2007
"... Dynamic causal modelling (DCM) has been applied recently to eventrelated responses (ERPs) measured with EEG/MEG. DCM attempts to explain ERPs using a network of interacting cortical sources and waveform differences in terms of coupling changes among sources. The aim of this work was to establish the ..."
Abstract
-
Cited by 33 (5 self)
- Add to MetaCart
(Show Context)
Dynamic causal modelling (DCM) has been applied recently to eventrelated responses (ERPs) measured with EEG/MEG. DCM attempts to explain ERPs using a network of interacting cortical sources and waveform differences in terms of coupling changes among sources. The aim of this work was to establish the validity of DCM by assessing its reproducibility across subjects. We used an oddball paradigm to elicit mismatch responses. Sources of cortical activity were modelled as equivalent current dipoles, using a biophysical informed spatiotemporal forward model that included connections among neuronal subpopulations in each source. Bayesian inversion provided estimates of changes in coupling among sources and the marginal likelihood of each model. By specifying different connectivity models we were able to evaluate three different hypotheses: differences in the ERPs to rare and frequent events are mediated by changes in forward connections (F-model), backward connections (B-model) or both (FB-model). The results were remarkably consistent over subjects. In all but one subject, the forward model was better than the backward model. This is an important result because these models have the same number of parameters (i.e., the complexity). Furthermore, the FB-model was significantly better than both, in 7 out of 11 subjects. This is another important result because it shows that a more complex model (that can fit the data more accurately) is not necessarily the most likely model. At the group level the FB-model supervened. We discuss these findings in terms of the validity and usefulness of DCM in characterising EEG/ MEG data and its ability to model ERPs in a mechanistic fashion. © 2007 Elsevier Inc. All rights reserved.
a potential tool for BCI systems
- IEEE Signal Processing Magazine, special issue on Brain-Computer Interfaces
, 2008
"... ..."