Results 1  10
of
25
Term Rewriting Systems
, 1992
"... Term Rewriting Systems play an important role in various areas, such as abstract data type specifications, implementations of functional programming languages and automated deduction. In this chapter we introduce several of the basic comcepts and facts for TRS's. Specifically, we discuss Abstract Re ..."
Abstract

Cited by 567 (16 self)
 Add to MetaCart
Term Rewriting Systems play an important role in various areas, such as abstract data type specifications, implementations of functional programming languages and automated deduction. In this chapter we introduce several of the basic comcepts and facts for TRS's. Specifically, we discuss Abstract Reduction Systems
An Implementation of Narrowing Strategies
 Journal of the ACM
, 2001
"... This paper describes an implementation of narrowing, an essential component of implementations of modern functional logic languages. These implementations rely on narrowing, in particular on some optimal narrowing strategies, to execute functional logic programs. We translate functional logic progra ..."
Abstract

Cited by 294 (123 self)
 Add to MetaCart
This paper describes an implementation of narrowing, an essential component of implementations of modern functional logic languages. These implementations rely on narrowing, in particular on some optimal narrowing strategies, to execute functional logic programs. We translate functional logic programs into imperative (Java) programs without an intermediate abstract machine. A central idea of our approach is the explicit representation and processing of narrowing computations as data objects. This enables the implementation of operationally complete strategies (i.e., without backtracking) or techniques for search control (e.g., encapsulated search). Thanks to the use of an intermediate and portable representation of programs, our implementation is general enough to be used as a common back end for a wide variety of functional logic languages.
ContextSensitive Computations in Functional and Functional Logic Programs
 JOURNAL OF FUNCTIONAL AND LOGIC PROGRAMMING
, 1998
"... ..."
Parallel Evaluation Strategies for Functional Logic Languages
 In Proc. of the Fourteenth International Conference on Logic Programming (ICLP’97
, 1997
"... We introduce novel, sound, complete, and locally optimal evaluation strategies for functional logic programming languages. Our strategies combine, in a nontrivial way, two landmark techniques in this area: the computation of unifiers performed by needed narrowing in inductively sequential rewrite s ..."
Abstract

Cited by 48 (27 self)
 Add to MetaCart
We introduce novel, sound, complete, and locally optimal evaluation strategies for functional logic programming languages. Our strategies combine, in a nontrivial way, two landmark techniques in this area: the computation of unifiers performed by needed narrowing in inductively sequential rewrite systems and the simultaneous reduction of a necessary set of redexes performed by rewriting in weakly orthogonal, constructorbased rewrite systems. First, we define a sequential strategy similar in scope to other narrowing strategies used in modern lazy functional logic languages. Then, based on the sequential strategy, we define a parallel narrowing strategy that has several noteworthy characteristics: it is the first complete narrowing strategy which evaluates ground expressions in a fully deterministic, optimal way; it computes shortest derivations and minimal sets of solutions on inductively sequential rewrite systems; and when combined with term simplification, it subsumes and improves all r...
ContextSensitive Rewriting Strategies
, 1997
"... Contextsensitive rewriting is a simple restriction of rewriting which is formalized by imposing fixed restrictions on replacements. Such a restriction is given on a purely syntactic basis: it is (explicitly or automatically) specified on the arguments of symbols of the signature and inductively ..."
Abstract

Cited by 43 (30 self)
 Add to MetaCart
Contextsensitive rewriting is a simple restriction of rewriting which is formalized by imposing fixed restrictions on replacements. Such a restriction is given on a purely syntactic basis: it is (explicitly or automatically) specified on the arguments of symbols of the signature and inductively extended to arbitrary positions of terms built from those symbols. Termination is not only preserved but usually improved and several methods have been developed to formally prove it. In this paper, we investigate the definition, properties, and use of contextsensitive rewriting strategies, i.e., particular, fixed sequences of contextsensitive rewriting steps. We study how to define them in order to obtain efficient computations and to ensure that contextsensitive computations terminate whenever possible. We give conditions enabling the use of these strategies for rootnormalization, normalization, and infinitary normalization. We show that this theory is suitable for formalizing ...
Specialization of Lazy Functional Logic Programs
 IN PROC. OF THE ACM SIGPLAN CONF. ON PARTIAL EVALUATION AND SEMANTICSBASED PROGRAM MANIPULATION, PEPM'97, VOLUME 32, 12 OF SIGPLAN NOTICES
, 1997
"... Partial evaluation is a method for program specialization based on fold/unfold transformations [8, 25]. Partial evaluation of pure functional programs uses mainly static values of given data to specialize the program [15, 44]. In logic programming, the socalled static/dynamic distinction is hard ..."
Abstract

Cited by 37 (23 self)
 Add to MetaCart
Partial evaluation is a method for program specialization based on fold/unfold transformations [8, 25]. Partial evaluation of pure functional programs uses mainly static values of given data to specialize the program [15, 44]. In logic programming, the socalled static/dynamic distinction is hardly present, whereas considerations of determinacy and choice points are far more important for control [12]. We discuss these issues in the context of a (lazy) functional logic language. We formalize a twophase specialization method for a nonstrict, first order, integrated language which makes use of lazy narrowing to specialize the program w.r.t. a goal. The basic algorithm (first phase) is formalized as an instance of the framework for the partial evaluation of functional logic programs of [2, 3], using lazy narrowing. However, the results inherited by [2, 3] mainly regard the termination of the PE method, while the (strong) soundness and completeness results must be restated for the lazy strategy. A postprocessing renaming scheme (second phase) is necessary which we describe and illustrate on the wellknown matching example. This phase is essential also for other nonlazy narrowing strategies, like innermost narrowing, and our method can be easily extended to these strategies. We show that our method preserves the lazy narrowing semantics and that the inclusion of simplification steps in narrowing derivations can improve control during specialization.
Strongly Sequential and Inductively Sequential Term Rewriting Systems
, 1998
"... 1 Introduction Michael Hanus Salvador Lucas Aart Middeldorp Strongly sequential and inductively sequential term rewriting systems hanus@informatik.rwthaachen.de slucas@dsic.upv.es ami@score.is.tsukuba.ac.jp first(0,x) [] first(s(x),y::z) y::first(x,z) first x 1 0 s(x) x 2 first x 1 x 2 first 0 x ..."
Abstract

Cited by 29 (14 self)
 Add to MetaCart
1 Introduction Michael Hanus Salvador Lucas Aart Middeldorp Strongly sequential and inductively sequential term rewriting systems hanus@informatik.rwthaachen.de slucas@dsic.upv.es ami@score.is.tsukuba.ac.jp first(0,x) [] first(s(x),y::z) y::first(x,z) first x 1 0 s(x) x 2 first x 1 x 2 first 0 x 2 first s x x 2 [] first s x y z y first x z first inductively sequential outermostneeded strategy needed rewriting needed Definitional trees inductively sequential inductively sequential index trees forwardbranching index trees matching dags outermostneeded strategy index reduction Informatik II, RWTH Aachen, D52056 Aachen, Germany, . Work partially supported by DFG (under grant Ha 2457/11) and Acci'on Integrada. DSIC, U.P. de Valencia, Camino de la Vera s/n, Apdo. 22012, E46071 Valencia, Spain, . Work partially supported by EECHCM grant ERBCHRXCT940624, Bancaixa (BancajaEuropa grant), Acci'on Integrada (HA19970073) and CICYT (under grant TIC 950433C0303). Institute of Informa...
Optimal Normalization in Orthogonal Term Rewriting Systems
 In: Proc. of the 5 th International Conference on Rewriting Techniques and Applications, RTA'93
, 1993
"... . We design a normalizing strategy for orthogonal term rewriting systems (OTRSs), which is a generalization of the callbyneed strategy of HuetL'evy [4]. The redexes contracted in our strategy are essential in the sense that they have "descendants" under any reduction of a given term. There is an ..."
Abstract

Cited by 24 (20 self)
 Add to MetaCart
. We design a normalizing strategy for orthogonal term rewriting systems (OTRSs), which is a generalization of the callbyneed strategy of HuetL'evy [4]. The redexes contracted in our strategy are essential in the sense that they have "descendants" under any reduction of a given term. There is an essential redex in any term not in normal form. We further show that contraction of the innermost essential redexes gives an optimal reduction to normal form, if it exists. We classify OTRSs depending on possible kinds of redex creation as noncreating, persistent, insidecreating, nonleftabsorbing, etc. All these classes are decidable. TRSs in these classes are sequential, but they do not need to be strongly sequential. For noncreating and persistent OTRSs, we show that our optimal strategy is efficient as well. 1 Introduction In this paper, we study correct and optimal computations in Orthogonal Term Rewriting Systems (OTRSs). We only consider onestep rewriting strategies, which selec...
Open Problems in Rewriting
 Proceeding of the Fifth International Conference on Rewriting Techniques and Application (Montreal, Canada), LNCS 690
, 1991
"... Introduction Interest in the theory and applications of rewriting has been growing rapidly, as evidenced in part by four conference proceedings #including this one# #15, 26, 41,66#; three workshop proceedings #33, 47, 77#; #ve special journal issues #5,88, 24, 40, 67#; more than ten surveys #2,7,27 ..."
Abstract

Cited by 19 (2 self)
 Add to MetaCart
Introduction Interest in the theory and applications of rewriting has been growing rapidly, as evidenced in part by four conference proceedings #including this one# #15, 26, 41,66#; three workshop proceedings #33, 47, 77#; #ve special journal issues #5,88, 24, 40, 67#; more than ten surveys #2,7,27, 28, 44, 56,57,76, 82, 81#; one edited collection of papers #1#; four monographs #3, 12,55,65#; and seven books #four of them still in progress# #8,9, 35, 54, 60,75, 84#. To encourage and stimulate continued progress in this area, wehave collected #with the help of colleagues# a number of problems that appear to us to be of interest and regarding whichwe do not know the answer. Questions on rewriting and other equational paradigms have been included; manyhave not aged su#ciently to be accorded the appellation #open problem". Wehave limited ourselves to theoretical questions, though there are certainly many additional interesting questions relating to applications and implementation
Improving Control in Functional Logic Program Specialization
, 1998
"... We have recently defined a framework for Narrowingdriven Partial Evaluation (NPE) of functional logic programs. This method is as powerful as partial deduction of logic programs and positive supercompilation of functional programs. Although it is possible to treat complex terms containing primitive ..."
Abstract

Cited by 18 (12 self)
 Add to MetaCart
We have recently defined a framework for Narrowingdriven Partial Evaluation (NPE) of functional logic programs. This method is as powerful as partial deduction of logic programs and positive supercompilation of functional programs. Although it is possible to treat complex terms containing primitive functions (e.g. conjunctions or equations) in the NPE framework, its basic control mechanisms do not allow for effective polygenetic specialization of these complex expressions. We introduce a sophisticated unfolding rule endowed with a dynamic narrowing strategy which permits flexible scheduling of the elements (in conjunctions) which are reduced during specialization. We also present a novel abstraction operator which carefully considers primitive functions and is the key to achieving accurate polygenetic specialization. The abstraction operator extends some recent partitioning techniques defined in the framework of conjunctive partial deduction. We provide experimental results obtained from an implementation using the INDY system which demonstrate that the control refinements produce better specializations.