Results 1 
2 of
2
Parametric and TypeDependent Polymorphism
, 1995
"... Data Types, though, as Reynolds stresses, is not perfectly suited for higher type or higher order systems and, thus, he proposes a "relational" treatment of invariance: computations do not depend on types in the sense that they are "invariant" w.r.t. arbitrary relations on types and between types. R ..."
Abstract

Cited by 10 (5 self)
 Add to MetaCart
Data Types, though, as Reynolds stresses, is not perfectly suited for higher type or higher order systems and, thus, he proposes a "relational" treatment of invariance: computations do not depend on types in the sense that they are "invariant" w.r.t. arbitrary relations on types and between types. Reynolds's approach set the basis for most of the current work on parametricity, as we will review below (.3). Some twelve years earlier, Girard had given just a simple hint towards another understanding of the properties of "computing with types". In [Gir71], it is shown, as a side remark, that, given a type A, if one defines a term J A such that, for any type B, J A B reduces to 1, if A = B, and reduces to 0, if A ยน B, then F + J A does not normalize. In particular, then, J A is not definable in F. This remark on how terms may depend on types is inspired by a view of types which is quite different from Reynolds's. System F was born as the theory of proofs of second order intuitionis...
Type Theory via Exact Categories (Extended Abstract)
 In Proceedings of the 13th Annual IEEE Symposium on Logic in Computer Science LICS '98
, 1998
"... Partial equivalence relations (and categories of these) are a standard tool in semantics of type theories and programming languages, since they often provide a cartesian closed category with extended definability. Using the theory of exact categories, we give a categorytheoretic explanation of why ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
Partial equivalence relations (and categories of these) are a standard tool in semantics of type theories and programming languages, since they often provide a cartesian closed category with extended definability. Using the theory of exact categories, we give a categorytheoretic explanation of why the construction of a category of partial equivalence relations often produces a cartesian closed category. We show how several familiar examples of categories of partial equivalence relations fit into the general framework. 1 Introduction Partial equivalence relations (and categories of these) are a standard tool in semantics of programming languages, see e.g. [2, 5, 7, 9, 15, 17, 20, 22, 35] and [6, 29] for extensive surveys. They are usefully applied to give proofs of correctness and adequacy since they often provide a cartesian closed category with additional properties. Take for instance a partial equivalence relation on the set of natural numbers: a binary relation R ` N\ThetaN on th...