Results 1 
7 of
7
Adequacy for algebraic effects
 In 4th FoSSaCS
, 2001
"... We present a logic for algebraic effects, based on the algebraic representation of computational effects by operations and equations. We begin with the acalculus, a minimal calculus which separates values, effects, and computations and thereby canonises the order of evaluation. This is extended to ..."
Abstract

Cited by 30 (16 self)
 Add to MetaCart
We present a logic for algebraic effects, based on the algebraic representation of computational effects by operations and equations. We begin with the acalculus, a minimal calculus which separates values, effects, and computations and thereby canonises the order of evaluation. This is extended to obtain the logic, which is a classical firstorder multisorted logic with higherorder value and computation types, as in Levy’s callbypushvalue, a principle of induction over computations, a free algebra principle, and predicate fixed points. This logic embraces Moggi’s computational λcalculus, and also, via definable modalities, HennessyMilner logic, and evaluation logic, though Hoare logic presents difficulties. 1
Complete Axioms for Categorical Fixedpoint Operators
 In Proceedings of 15th Annual Symposium on Logic in Computer Science
, 2000
"... We give an axiomatic treatment of fixedpoint operators in categories. A notion of iteration operator is defined, embodying the equational properties of iteration theories. We prove a general completeness theorem for iteration operators, relying on a new, purely syntactic characterisation of the fre ..."
Abstract

Cited by 29 (6 self)
 Add to MetaCart
We give an axiomatic treatment of fixedpoint operators in categories. A notion of iteration operator is defined, embodying the equational properties of iteration theories. We prove a general completeness theorem for iteration operators, relying on a new, purely syntactic characterisation of the free iteration theory. We then show how iteration operators arise in axiomatic domain theory. One result derives them from the existence of sufficiently many bifree algebras (exploiting the universal property Freyd introduced in his notion of algebraic compactness) . Another result shows that, in the presence of a parameterized natural numbers object and an equational lifting monad, any uniform fixedpoint operator is necessarily an iteration operator. 1. Introduction Fixed points play a central role in domain theory. Traditionally, one works with a category such as Cppo, the category of !continuous functions between !complete pointed partial orders. This possesses a leastfixedpoint oper...
Using synthetic domain theory to prove operational properties of a polymorphic programming language based on strictness
 Manuscript
"... We present a simple and workable axiomatization of domain theory within intuitionistic set theory, in which predomains are (special) sets, and domains are algebras for a simple equational theory. We use the axioms to construct a relationally parametric settheoretic model for a compact but powerful ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
We present a simple and workable axiomatization of domain theory within intuitionistic set theory, in which predomains are (special) sets, and domains are algebras for a simple equational theory. We use the axioms to construct a relationally parametric settheoretic model for a compact but powerful polymorphic programming language, given by a novel extension of intuitionistic linear type theory based on strictness. By applying the model, we establish the fundamental operational properties of the language. 1.
Computational Adequacy for Recursive Types in Models of Intuitionistic Set Theory
 In Proc. 17th IEEE Symposium on Logic in Computer Science
, 2003
"... This paper provides a unifying axiomatic account of the interpretation of recursive types that incorporates both domaintheoretic and realizability models as concrete instances. Our approach is to view such models as full subcategories of categorical models of intuitionistic set theory. It is shown ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
This paper provides a unifying axiomatic account of the interpretation of recursive types that incorporates both domaintheoretic and realizability models as concrete instances. Our approach is to view such models as full subcategories of categorical models of intuitionistic set theory. It is shown that the existence of solutions to recursive domain equations depends upon the strength of the set theory. We observe that the internal set theory of an elementary topos is not strong enough to guarantee their existence. In contrast, as our first main result, we establish that solutions to recursive domain equations do exist when the category of sets is a model of full intuitionistic ZermeloFraenkel set theory. We then apply this result to obtain a denotational interpretation of FPC, a recursively typed lambdacalculus with callbyvalue operational semantics. By exploiting the intuitionistic logic of the ambient model of intuitionistic set theory, we analyse the relationship between operational and denotational semantics. We first prove an “internal ” computational adequacy theorem: the model always believes that the operational and denotational notions of termination agree. This allows us to identify, as our second main result, a necessary and sufficient condition for genuine “external ” computational adequacy to hold, i.e. for the operational and denotational notions of termination to coincide in the real world. The condition is formulated as a simple property of the internal logic, related to the logical notion of 1consistency. We provide useful sufficient conditions for establishing that the logical property holds in practice. Finally, we outline how the methods of the paper may be applied to concrete models of FPC. In doing so, we obtain computational adequacy results for an extensive range of realizability and domaintheoretic models.
Synthetic domain theory and models of linear Abadi & Plotkin logic
, 2005
"... Plotkin suggested using a polymorphic dual intuitionistic / linear type theory (PILLY) as a metalanguage for parametric polymorphism and recursion. In recent work the first two authors and R.L. Petersen have defined a notion of parametric LAPLstructure, which are models of PILLY, in which one can r ..."
Abstract

Cited by 5 (4 self)
 Add to MetaCart
Plotkin suggested using a polymorphic dual intuitionistic / linear type theory (PILLY) as a metalanguage for parametric polymorphism and recursion. In recent work the first two authors and R.L. Petersen have defined a notion of parametric LAPLstructure, which are models of PILLY, in which one can reason using parametricity and, for example, solve a large class of domain equations, as suggested by Plotkin. In this paper we show how an interpretation of a strict version of Bierman, Pitts and Russo’s language Lily into synthetic domain theory presented by Simpson and Rosolini gives rise to a parametric LAPLstructure. This adds to the evidence that the notion of LAPLstructure is a general notion suitable for treating many different parametric models, and it provides formal proofs of consequences of parametricity expected to hold for the interpretation. Finally, we show how these results in combination with Rosolini and Simpson’s computational adequacy result can be used to prove consequences of parametricity for Lily. In particular we show that one can solve domain equations in Lily up to ground contextual equivalence. 1
Computer Theorem Proving in Math
"... We give an overview of issues surrounding computerverified theorem proving in the standard puremathematical context. ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
We give an overview of issues surrounding computerverified theorem proving in the standard puremathematical context.