Results 1  10
of
54
The Complexity of Firstorder and Monadic Secondorder Logic Revisited
 Annals of Pure and Applied Logic
, 2002
"... The modelchecking problem for a logic L on a class C of structures asks whether a given Lsentence holds in a given structure in C. In this paper, we give superexponential lower bounds for fixedparameter tractable modelchecking problems for firstorder and monadic secondorder logic. We show tha ..."
Abstract

Cited by 63 (6 self)
 Add to MetaCart
The modelchecking problem for a logic L on a class C of structures asks whether a given Lsentence holds in a given structure in C. In this paper, we give superexponential lower bounds for fixedparameter tractable modelchecking problems for firstorder and monadic secondorder logic. We show that unless PTIME = NP, the modelchecking problem for monadic secondorder logic on finite words is not solvable in time f(k) · p(n), for any elementary function f and any polynomial p. Here k denotes the size of the input sentence and n the size of the input word. We prove the same result for firstorder logic under a stronger complexity theoretic assumption from parameterized complexity theory. Furthermore, we prove that the modelchecking problems for firstorder logic on structures of degree 2 and of bounded degree d ≥ 3 are not solvable in time 2 2o(k) · p(n) (for degree 2) and 2 22o(k) · p(n) (for degree d), for any polynomial p, again under an assumption from parameterized complexity theory. We match these lower bounds by corresponding upper bounds. 1.
L.: Locally consistent transformations and query answering in data exchange
 In: Proceedings PODS’04
, 2004
"... Data exchange is the problem of taking data structured under a source schema and creating an instance of a target schema. Given a source instance, there may be many solutions – target instances that satisfy the constraints of the data exchange problem. Previous work has identified two classes of des ..."
Abstract

Cited by 49 (17 self)
 Add to MetaCart
Data exchange is the problem of taking data structured under a source schema and creating an instance of a target schema. Given a source instance, there may be many solutions – target instances that satisfy the constraints of the data exchange problem. Previous work has identified two classes of desirable solutions: canonical universal solutions, and their cores. Query answering in data exchange amounts to rewriting a query over the target schema to another query that, over a materialized target instance, gives the result that is semantically consistent with the source. A basic question is then whether there exists a transformation sending a source instance into a solution over which target queries can be answered. We show that the answer is negative for many data exchange transformations that have structural properties similar to canonical universal solutions and cores. Namely, we prove that many such transformations preserve the local structure of the data. Using this notion, we further show that every target query rewritable over such a transformation cannot distinguish tuples whose neighborhoods in the source are similar. This gives us a first tool that helps check whether a query is rewritable. We also show that these results are robust: they hold for an extension of relational calculus with grouping and aggregates, and for two different semantics of query answering. 1.
Local Properties of Query Languages
"... predeterminedportionoftheinput.Examplesincludeallrelationalcalculusqueries. everyrelationalcalculus(rstorder)queryislocal,thegeneralresultsprovedforlocalqueriescan manyeasyinexpressibilityproofsforlocalqueries.Wethenconsideracloselyrelatedproperty, namely,theboundeddegreeproperty.Itdescribestheoutp ..."
Abstract

Cited by 33 (21 self)
 Add to MetaCart
predeterminedportionoftheinput.Examplesincludeallrelationalcalculusqueries. everyrelationalcalculus(rstorder)queryislocal,thegeneralresultsprovedforlocalqueriescan manyeasyinexpressibilityproofsforlocalqueries.Wethenconsideracloselyrelatedproperty, namely,theboundeddegreeproperty.Itdescribestheoutputsoflocalqueriesonstructuresthat locallylook\simple."Everyquerythatislocalisshowntohavetheboundeddegreeproperty.Since Westartbyprovingageneralresultdescribingoutputsoflocalqueries.Thisresultleadsto toapplythanEhrenfeuchtFrassegames.Wealsoshowthatsomegeneralizationsofthebounded degreepropertythatwereconjecturedtohold,failforrelationalcalculus. beviewedas\otheshelf"strategiesforprovinginexpressibilityresults,whichareofteneasier maintenanceofviews,andshowthatSQLandrelationalcalculusareincapableofmaintainingthe gregates,whichisessentiallyplainSQL,hastheboundeddegreeproperty,thusansweringaques tionthathasbeenopenforseveralyears.Consequently,rstorderquerieswithHartigorRescher quantiersalsohavetheboundeddegreeproperty.Finally,weapplyourresultstoincremental Wethenprovethatthelanguageobtainedfromrelationalcalculusbyaddinggroupingandag
Linear Time Computable Problems and FirstOrder Descriptions
, 1996
"... this article is a proof that each FO problem can be solved in linear time if only relational structures of bounded degree are considered. The basic idea of the proof is a localization technique based on a method that was originally developed by Hanf (Hanf 1965) to show that the elementary theories o ..."
Abstract

Cited by 31 (2 self)
 Add to MetaCart
this article is a proof that each FO problem can be solved in linear time if only relational structures of bounded degree are considered. The basic idea of the proof is a localization technique based on a method that was originally developed by Hanf (Hanf 1965) to show that the elementary theories of two structures are equal under certain conditions, i.e., that two structures agree on all firstorder sentences. Fagin, Stockmeyer and Vardi (Fagin et al. 1993) developed a variant of this technique, which is applicable in descriptive complexity theory to classes of finite relational structures of uniformly bounded degree. Variants of this result can also be found in Gaifman (1982) (see also Thomas (1991)). The essential content of this result, which is also called the HanfSphere Lemma, is that two relational structures of bounded degree satisfy the same firstorder sentences of a certain quantifierrank if both contain, up to a certain number m, the same number of isomorphism types of substructures of a bounded radius r. In addition, a technique of model interpretability from Rabin (1965) (see also Arnborg et al. (1991), Seese (1992), Compton and Henson (1987) and Baudisch et al. (1982)) is adapted to descriptive complexity classes, and proved to be useful for reducing the case of an arbitrary class of relational structures to a class of structures consisting only of the domain and one binary irreflexive and symmetric relation, i.e., the class of simple graphs. It is shown that the class of simple graphs is lintimeuniversal with respect to firstorder logic, which shows that many problems on descriptive complexity classes, described in languages extending firstorder logic for arbitrary structures, can be reduced to problems on simple graphs. This paper is organized as f...
Notions of Locality and Their Logical Characterizations Over Finite Models
, 1997
"... Many known tools for proving expressibility bounds for firstorder logic are based on one of several locality properties. In this paper we characterize the relationship between those notions of locality. We note that Gaifman's locality theorem gives rise to two notions: one deals with sentences a ..."
Abstract

Cited by 25 (17 self)
 Add to MetaCart
Many known tools for proving expressibility bounds for firstorder logic are based on one of several locality properties. In this paper we characterize the relationship between those notions of locality. We note that Gaifman's locality theorem gives rise to two notions: one deals with sentences and one with open formulae. We prove that the former implies Hanf's notion of locality, which in turn implies Gaifman's locality for open formulae. Each of these implies the bounded degree property, which is one of the easiest tools for proving expressibility bounds. These results apply beyond the firstorder case. We use them to derive expressibility bounds for firstorder logic with unary quantifiers and counting. We also characterize the notions of locality on structures of small degree. 1 Introduction It is well known that firstorder logic has limited expressive power. Typically, inexpressibility proofs are based on either a compactness argument, or EhrenfeuchtFraiss'e games. In ...
On Winning Strategies With Unary Quantifiers
 J. Logic and Computation
, 1996
"... A combinatorial argument for two finite structures to agree on all sentences with bounded quantifier rank in firstorder logic with any set of unary generalized quantifiers, is given. It is known that connectivity of finite structures is neither in monadic \Sigma 1 1 nor in L !! (Q u ), where Q ..."
Abstract

Cited by 25 (6 self)
 Add to MetaCart
A combinatorial argument for two finite structures to agree on all sentences with bounded quantifier rank in firstorder logic with any set of unary generalized quantifiers, is given. It is known that connectivity of finite structures is neither in monadic \Sigma 1 1 nor in L !! (Q u ), where Q u is the set of all unary generalized quantifiers. Using this combinatorial argument and a combination of secondorder EhrenfeuchtFra iss'e games developed by Ajtai and Fagin, we prove that connectivity of finite structures is not in monadic \Sigma 1 1 with any set of unary quantifiers, even if sentences are allowed to contain builtin relations of moderate degree. The combinatorial argument is also used to show that no class (if it is not in some sense trivial) of finite graphs defined by forbidden minors, is in L !! (Q u ). Especially, the class of planar graphs is not in L !! (Q u ). 1. Introduction The expressive power of firstorder logic L !! is rather limited. This is beca...
Logics with Aggregate Operators
 Journal of the ACM
"... We study adding aggregate operators, such as summing up elements of a column of a relation, to logics with counting mechanisms. The primary motivation comes from database applications, where aggregate operators are present in all real life query languages. Unlike other features of query languages, a ..."
Abstract

Cited by 24 (12 self)
 Add to MetaCart
We study adding aggregate operators, such as summing up elements of a column of a relation, to logics with counting mechanisms. The primary motivation comes from database applications, where aggregate operators are present in all real life query languages. Unlike other features of query languages, aggregates are not adequately captured by the existing logical formalisms. Consequently, all previous approaches to analyzing the expressive power of aggregation were only capable of producing partial results, depending on the allowed class of aggregate and arithmetic operations. We consider a powerful counting logic, and extend it with the set of all aggregate operators. We show that the resulting logic satis es analogs of Hanf's and Gaifman's theorems, meaning that it can only express local properties. We consider a database query language that expresses all the standard aggregates found in commercial query languages, and show how it can be translated into the aggregate logic, thereby pro...
On Winning Ehrenfeucht Games and Monadic NP
 Annals of Pure and Applied Logic
, 1996
"... Inexpressibility results in Finite Model Theory are often proved by showing that Duplicator, one of the two players of an Ehrenfeucht game, has a winning strategy on certain structures. In this article a new method is introduced that allows, under certain conditions, the extension of a winning strat ..."
Abstract

Cited by 21 (3 self)
 Add to MetaCart
Inexpressibility results in Finite Model Theory are often proved by showing that Duplicator, one of the two players of an Ehrenfeucht game, has a winning strategy on certain structures. In this article a new method is introduced that allows, under certain conditions, the extension of a winning strategy of Duplicator on some small parts of two finite structures to a global winning strategy. As applications of this technique it is shown that (*) Graph Connectivity is not expressible in existential monadic secondorder logic (MonNP), even in the presence of a builtin linear order, (*) Graph Connectivity is not expressible in MonNP even in the presence of arbitrary builtin relations of degree n^o(1), and (*) the presence of a builtin linear order gives MonNP more expressive power than the presence of a builtin successor relation.
The Closure of Monadic NP
 Journal of Computer and System Sciences
, 1997
"... It is a wellknown result of Fagin that the complexity class NP coincides with the class of ..."
Abstract

Cited by 21 (0 self)
 Add to MetaCart
It is a wellknown result of Fagin that the complexity class NP coincides with the class of
Graph Connectivity and Monadic NP
 In Proc. 35th IEEE Symp. on Foundations of Computer Science
, 1994
"... Ehrenfeucht games are a useful tool in proving that certain properties of finite structures are not expressible by formulas of a certain type. In this paper a new method is introduced that allows the extension of a local winning strategy for Duplicator, one of the two players in Ehrenfeucht games, t ..."
Abstract

Cited by 18 (8 self)
 Add to MetaCart
Ehrenfeucht games are a useful tool in proving that certain properties of finite structures are not expressible by formulas of a certain type. In this paper a new method is introduced that allows the extension of a local winning strategy for Duplicator, one of the two players in Ehrenfeucht games, to a global winning strategy. As an application it is shown that Graph Connectivity cannot be expressed by existential secondorder formulas, where the secondorder quantification is restricted to unary relations (Monadic NP), even in the presence of a builtin linear order. This settles an open problem from [1] and [11]. As a second application it is stated, that, on the other hand, the presence of a linear order increases the power of Monadic NP more than the presence of a successor relation. 1 Introduction Fagin [8] showed that the complexity class NP coincides with the class of all sets of finite structures that can be characterized by existential secondorder formulas (\Sigma 1 1 ). Th...