Results 1  10
of
131
Sybilguard: Defending against sybil attacks via social networks
 In ACM SIGCOMM ’06
, 2006
"... Peertopeer and other decentralized, distributed systems are known to be particularly vulnerable to sybil attacks. In a sybil attack, a malicious user obtains multiple fake identities and pretends to be multiple, distinct nodes in the system. By controlling a large fraction of the nodes in the syst ..."
Abstract

Cited by 329 (6 self)
 Add to MetaCart
(Show Context)
Peertopeer and other decentralized, distributed systems are known to be particularly vulnerable to sybil attacks. In a sybil attack, a malicious user obtains multiple fake identities and pretends to be multiple, distinct nodes in the system. By controlling a large fraction of the nodes in the system, the malicious user is able to “out vote” the honest users in collaborative tasks such as Byzantine failure defenses. This paper presents SybilGuard, anovelprotocolfor limiting the corruptive influences of sybil attacks. Our protocol is based on the “social network ” among user identities, where an edge between two identities indicates a humanestablished trust relationship. Malicious users can create many identities but few trust relationships. Thus, there is a disproportionatelysmall “cut ” in the graph between the sybil nodes and the honest nodes. SybilGuard exploits this property to bound the number of identities a malicious user can create. We show the effectiveness of SybilGuard both analytically and experimentally.
Capacity of MultiChannel Wireless Networks with Random (c, f) Assignment
, 2007
"... With the availability of multiple unlicensed spectral bands, and potential costbased limitations on the capabilities of individual nodes, it is increasingly relevant to study the performance of multichannel wireless networks with channel switching constraints. To this effect, some constraint models ..."
Abstract

Cited by 269 (11 self)
 Add to MetaCart
(Show Context)
With the availability of multiple unlicensed spectral bands, and potential costbased limitations on the capabilities of individual nodes, it is increasingly relevant to study the performance of multichannel wireless networks with channel switching constraints. To this effect, some constraint models have been recently proposed, and connectivity and capacity results have been formulated for networks of randomly deployed singleinterface nodes subject to these constraints. One of these constraint models is termed random (c, f) assignment, wherein each node is preassigned a random subset of f channels out of c (each having bandwidth W c), and may only switch on these. Previous results for this model established bounds on network capacity, and proved that when c = O(logn), the perprnd f flow capacity is O(W nlogn) and Ω(W cnlogn) (where prnd = 1 −(1 − f f f f 2 c)(1 − c−1)...(1 − c − f+1) ≥ 1 − e − c). In this paper we present a lower bound construction that matches the previous upper prnd bound. This establishes the capacity as Θ(W nlogn). The surprising implication of this result is that when f = Ω ( √ c), random (c, f) assignment yields capacity of the same order as attainable via unconstrained switching. The routing/scheduling procedure used by us to achieve capacity requires synchronized routeconstruction for all flows in the network, leading to the open question of whether it is possible to achieve capacity using asynchronous procedures.
SybilLimit: A nearoptimal social network defense against sybil attacks
 2008 [Online]. Available: http://www.comp.nus.edu.sg/~yuhf/sybillimittr.pdf
"... Abstract—Openaccess distributed systems such as peertopeer systems are particularly vulnerable to sybil attacks, where a malicious user creates multiple fake identities (called sybil nodes). Without a trusted central authority that can tie identities to real human beings, defending against sybil ..."
Abstract

Cited by 213 (7 self)
 Add to MetaCart
(Show Context)
Abstract—Openaccess distributed systems such as peertopeer systems are particularly vulnerable to sybil attacks, where a malicious user creates multiple fake identities (called sybil nodes). Without a trusted central authority that can tie identities to real human beings, defending against sybil attacks is quite challenging. Among the small number of decentralized approaches, our recent SybilGuard protocol leverages a key insight on social networks to bound the number of sybil nodes accepted. Despite its promising direction, SybilGuard can allow a large number of sybil nodes to be accepted. Furthermore, SybilGuard assumes that social networks are fastmixing, which has never been confirmed in the real world. This paper presents the novel SybilLimit protocol that leverages the same insight as SybilGuard, but offers dramatically improved and nearoptimal guarantees. The number of sybil nodes accepted is reduced by a factor of 2 ( p n), or around 200 times in our experiments for a millionnode system. We further prove that SybilLimit’s guarantee is at most a log n factor away from optimal when considering approaches based on fastmixing social networks. Finally, based on three largescale realworld social networks, we provide the first evidence that realworld social networks are indeed fastmixing. This validates the fundamental assumption behind SybilLimit’s and SybilGuard’s approach. Index Terms—Social networks, sybil attack, sybil identities, SybilGuard, SybilLimit. I.
Influence and correlation in social networks
 In Proc. of the 14th ACM Int. Conf. on Knowledge Discovery and Data Mining (KDD’08
"... In many online social systems, social ties between users play an important role in dictating their behavior. One of the ways this can happen is through social influence, the phenomenon that the actions of a user can induce his/her friends to behave in a similar way. In systems where social influence ..."
Abstract

Cited by 159 (1 self)
 Add to MetaCart
(Show Context)
In many online social systems, social ties between users play an important role in dictating their behavior. One of the ways this can happen is through social influence, the phenomenon that the actions of a user can induce his/her friends to behave in a similar way. In systems where social influence exists, ideas, modes of behavior, or new technologies can diffuse through the network like an epidemic. Therefore, identifying and understanding social influence is of tremendous interest from both analysis and design points of view. This is a difficult task in general, since there are factors such as homophily or unobserved confounding variables that can induce statistical correlation between the actions of friends in a social network. Distinguishing influence from these is essentially the problem of distinguishing correlation from causality, a notoriously hard statistical problem. In this paper we study this problem systematically. We define fairly general models that replicate the aforementioned sources of social correlation. We then propose two simple tests that can identify influence as a source of social correlation when the time series of user actions is available. We give a theoretical justification of one of the tests by proving that with high probability it succeeds in ruling out influence in a rather general model of social correlation. We also simulate our tests on a number of examples designed by randomly generating actions of nodes on a real social network (from Flickr) according to one of several models. Simulation results confirm that our test performs well on these data. Finally, we apply them to real tagging data on Flickr, exhibiting that while there is significant social correlation in tagging behavior on this system, this correlation cannot be attributed to social influence.
An Analysis of Social NetworkBased Sybil Defenses ABSTRACT
"... Recently, there has been much excitement in the research community over using social networks to mitigate multiple identity, or Sybil, attacks. A number of schemes have been proposed, but they differ greatly in the algorithms they use and in the networks upon which they are evaluated. As a result, t ..."
Abstract

Cited by 92 (8 self)
 Add to MetaCart
Recently, there has been much excitement in the research community over using social networks to mitigate multiple identity, or Sybil, attacks. A number of schemes have been proposed, but they differ greatly in the algorithms they use and in the networks upon which they are evaluated. As a result, the research community lacks a clear understanding of how these schemes compare against each other, how well they would work on realworld social networks with different structural properties, or whether there exist other (potentially better) ways of Sybil defense. In this paper, we show that, despite their considerable differences, existing Sybil defense schemes work by detecting local communities (i.e., clusters of nodes more tightly knit than the rest of the graph) around a trusted node. Our finding has important implications for both existing and future designs of Sybil defense schemes. First, we show that there is an opportunity to leverage the substantial amount of prior work on general community detection algorithms in order to defend against Sybils. Second, our analysis reveals the fundamental limits of current social networkbased Sybil defenses: We demonstrate that networks with welldefined community structure are inherently more vulnerable to Sybil attacks, and that, in such networks, Sybils can carefully target their links in order make their attacks more effective.
Gossiping with multiple messages
 In INFOCOM
, 2007
"... Abstract — This paper investigates the dissemination of multiple pieces of information in large networks where users contact each other in a random uncoordinated manner, and users upload one piece per unit time. The underlying motivation is the design and analysis of piece selection protocols for pe ..."
Abstract

Cited by 50 (4 self)
 Add to MetaCart
(Show Context)
Abstract — This paper investigates the dissemination of multiple pieces of information in large networks where users contact each other in a random uncoordinated manner, and users upload one piece per unit time. The underlying motivation is the design and analysis of piece selection protocols for peertopeer networks which disseminate files by dividing them into pieces. We first investigate onesided protocols, where piece selection is based on the states of either the transmitter or the receiver. We show that any such protocol relying only on pushes, or alternatively only on pulls, will be inefficient in disseminating all pieces to all users. We propose a hybrid onesided piece selection protocol – INTERLEAVE – and show that by using both pushes and pulls it disseminates k pieces from a single source to n users in 10(k + log n) time, while obeying the constraint that each user can upload at most one piece in one unit of time. An optimal, unrealistic centralized protocol would take k+log 2 n time in this setting. Moreover, efficient dissemination is also possible if the source implements forward erasure coding, and users push the latestreleased coded pieces (but do not pull). We also investigate twosided protocols where piece selection is based on the states of both the trasmitter and the receiver. We show that it is possible to disseminate n pieces to n users in n + O(log n) time, starting from an initial state where each user has a unique piece. I.
Information spreading in stationary markovian evolving graphs
 In Proc. of the 23rd IEEE International Parallel and Distributed Processing Symposium (IPDPS
, 2009
"... Markovian evolving graphs [2] are dynamicgraph models where the links among a fixed set of nodes change during time according to an arbitrary Markovian rule. They are extremely general and they can well describe important dynamicnetwork scenarios. We study the speed of information spreading in the ..."
Abstract

Cited by 34 (9 self)
 Add to MetaCart
(Show Context)
Markovian evolving graphs [2] are dynamicgraph models where the links among a fixed set of nodes change during time according to an arbitrary Markovian rule. They are extremely general and they can well describe important dynamicnetwork scenarios. We study the speed of information spreading in the stationary phase by analyzing the completion time of the flooding mechanism. We prove a general theorem that establishes an upper bound on flooding time in any stationary Markovian evolving graph in terms of its nodeexpansion properties. We apply our theorem in two natural and relevant cases of such dynamic graphs: edgeMarkovian evolving graphs [24, 7] where the probability of existence of any edge at time t depends on the existence (or not) of the same edge at time t − 1; geometric Markovian evolving graphs [4, 10, 9] where the Markovian behaviour is yielded by n mobile radio stations, with fixed transmission radius, that perform n independent random walks over a square region of the plane. In both cases, the obtained upper bounds are shown to be nearly tight and, in fact, they turn out to be tight for a large range of the values of the input parameters. 1
DSybil: Optimal SybilResistance for Recommendation Systems
, 2009
"... Recommendation systems can be attacked in various ways, and the ultimate attack form is reached with a sybil attack, where the attacker creates a potentially unlimited number of sybil identities to vote. Defending against sybil attacks is often quite challenging, and the nature of recommendation sys ..."
Abstract

Cited by 30 (4 self)
 Add to MetaCart
(Show Context)
Recommendation systems can be attacked in various ways, and the ultimate attack form is reached with a sybil attack, where the attacker creates a potentially unlimited number of sybil identities to vote. Defending against sybil attacks is often quite challenging, and the nature of recommendation systems makes it even harder. This paper presents DSybil, a novel defense for diminishing the influence of sybil identities in recommendation systems. DSybil provides strong provable guarantees that hold even under the worstcase attack and are optimal. DSybil can defend against an unlimited number of sybil identities over time. DSybil achieves its strong guarantees by i) exploiting the heavytail distribution of the typical voting behavior of the honest identities, and ii) carefully identifying whether the system is already getting “enough help ” from the (weighted) voters already taken into account or whether more “help ” is needed. Our evaluation shows that DSybil would continue to provide highquality recommendations even when a millionnode botnet uses an optimal strategy to launch a sybil attack. 1.
Approximating Predicates and Expressive Queries on Probabilistic Databases
 In Proc. PODS
, 2008
"... We study complexity and approximation of queries in an expressive query language for probabilistic databases. The language studied supports the compositional use of confidence computation. It allows for a wide range of new use cases, such as the computation of conditional probabilities and of select ..."
Abstract

Cited by 29 (9 self)
 Add to MetaCart
(Show Context)
We study complexity and approximation of queries in an expressive query language for probabilistic databases. The language studied supports the compositional use of confidence computation. It allows for a wide range of new use cases, such as the computation of conditional probabilities and of selections based on predicates that involve marginal and conditional probabilities. These features have important applications in areas such as data cleaning and the processing of sensor data. We establish techniques for efficiently computing approximate query results and for estimating the error incurred by queries. The central difficulty is due to selection predicates based on approximated values, which may lead to the unreliable selection of tuples. A database may contain certain singularities at which approximation of predicates cannot be achieved; however, the paper presents an algorithm that provides efficient approximation otherwise.
On the runtime and robustness of randomized broadcasting
 In Proc. of ISAAC’ 06
, 2006
"... Abstract. One of the most frequently studied problems in the context of information dissemination in communication networks is the broadcasting problem. In this paper, we study the following randomized broadcasting protocol. At some time t an information r is placed at one of the nodes of a graph. I ..."
Abstract

Cited by 25 (6 self)
 Add to MetaCart
(Show Context)
Abstract. One of the most frequently studied problems in the context of information dissemination in communication networks is the broadcasting problem. In this paper, we study the following randomized broadcasting protocol. At some time t an information r is placed at one of the nodes of a graph. In the succeeding steps, each informed node chooses one neighbor, independently and uniformly at random, and informs this neighbor by sending a copy of r to it. In this work, we develop tight bounds on the runtime of the algorithm described above, and analyze its robustness. First, it is shown that on Δregular graphs this algorithm requires at least log2 − 1 N +log Δ