Results 1  10
of
31
Principles of Programming with Complex Objects and Collection Types
 Theoretical Computer Science
, 1995
"... We present a new principle for the development of database query languages that the primitive operations should be organized around types. Viewing a relational database as consisting of sets of records, this principle dictates that we should investigate separately operations for records and sets. Th ..."
Abstract

Cited by 132 (28 self)
 Add to MetaCart
We present a new principle for the development of database query languages that the primitive operations should be organized around types. Viewing a relational database as consisting of sets of records, this principle dictates that we should investigate separately operations for records and sets. There are two immediate advantages of this approach, which is partly inspired by basic ideas from category theory. First, it provides a language for structures in which record and set types may be freely combined: nested relations or complex objects. Second, the fundamental operations for sets are closely related to those for other "collection types" such as bags or lists, and this suggests how database languages may be uniformly extended to these new types. The most general operation on sets, that of structural recursion, is one in which not all programs are welldefined. In looking for limited forms of this operation that always give rise to welldefined operations, we find a number of close ...
Normal Forms and Conservative Properties for Query Languages over Collection Types
 In Proceedings of 12th ACM Symposium on Principles of Database Systems
, 1993
"... Strong normalization results are obtained for a general language for collection types. An induced normal form for sets and bags is then used to show that the class of functions whose input has height (that is, the maximal depth of nestings of sets/bags/lists in the complex object) at most i and out ..."
Abstract

Cited by 57 (27 self)
 Add to MetaCart
(Show Context)
Strong normalization results are obtained for a general language for collection types. An induced normal form for sets and bags is then used to show that the class of functions whose input has height (that is, the maximal depth of nestings of sets/bags/lists in the complex object) at most i and output has height at most o definable in a nested relational query language without powerset operator is independent of the height of intermediate expressions used. Our proof holds regardless of whether the language is used for querying sets, bags, or lists, even in the presence of variant types. Moreover, the normal forms are useful in a general approach to query optimization. Paredaens and Van Gucht proved a similar result for the special case when i = o = 1. Their result is complemented by Hull and Su who demonstrated the failure of independence when powerset operator is present and i = o = 1. The theorem of Hull and Su was generalized to all i and o by Grumbach and Vianu. Our result genera...
New Techniques for Studying Set Languages, Bag Languages and Aggregate Functions
, 1994
"... We provide new techniques for the analysis of the expressive power of query languages for nested collections. These languages may use set or bag semantics and may be further complicated by the presence of aggregate functions. We exhibit certain classes of graphs and prove that the properties of thes ..."
Abstract

Cited by 41 (24 self)
 Add to MetaCart
We provide new techniques for the analysis of the expressive power of query languages for nested collections. These languages may use set or bag semantics and may be further complicated by the presence of aggregate functions. We exhibit certain classes of graphs and prove that the properties of these graphs that can be tested in such languages are either finite or cofinite. This result settles the conjectures of Grumbach, Milo, and Paredaens that parity test, transitive closure, and balanced binary tree test are not expressible in bag languages like the PTIME fragment of BALG of Grumbach and Milo and BQL of Libkin and Wong. Moreover, it implies that many recursive queries, including simple ones like the test for a chain, cannot be expressed in a nested relational language even when aggregate functions are available. In an attempt to generalize the finitecofiniteness result, we study the bounded degree property which says that the number of distinct in and outdegrees in the output of...
Deciding Containment for Queries with Complex Objects and Aggregations
, 1997
"... We address the problem of query containment and query equivalence for complex objects. We show that for a certain conjunctive query language for complex objects, query containment and weak query equivalence are decidable. Our results have two consequences. First, when the answers of the two queries ..."
Abstract

Cited by 41 (5 self)
 Add to MetaCart
We address the problem of query containment and query equivalence for complex objects. We show that for a certain conjunctive query language for complex objects, query containment and weak query equivalence are decidable. Our results have two consequences. First, when the answers of the two queries are guaranteed not to contain empty sets, then weak equivalence coincides with equivalence, and our result answers partially an open problem about the equivalence of nest; unnest queries for complex objects [GPG90]. Second, we derive an NPcomplete algorithm for checking the equivalence of certain conjunctive queries with grouping and aggregates. Our results rely on a translation of the containment and equivalence conditions for complex objects into novel conditions on conjunctive queries, which we call simulation and strong simulation. These conditions are more complex than containment of conjunctive queries, because they involve arbitrary numbers of quantifier alternations. We prove that c...
Some Properties of Query Languages for Bags
 IN PROCEEDINGS OF 4TH INTERNATIONAL WORKSHOP ON DATABASE PROGRAMMING LANGUAGES
, 1993
"... In this paper we study the expressive power of query languages for nested bags. We define the ambient bag language by generalizing the constructs of the relational language of BreazuTannen, Buneman and Wong, which is known to have precisely the power of the nested relational algebra. Relative s ..."
Abstract

Cited by 39 (26 self)
 Add to MetaCart
In this paper we study the expressive power of query languages for nested bags. We define the ambient bag language by generalizing the constructs of the relational language of BreazuTannen, Buneman and Wong, which is known to have precisely the power of the nested relational algebra. Relative strength of additional polynomial constructs is studied, and the ambient language endowed with the strongest combination of those constructs is chosen as a candidate for the basic bag language, which is called BQL (Bag Query Language). We prove that achieveing the power of BQL in the relational language amounts to adding simple arithmetic to the latter. We show that BQL has shortcomings of the relational algebra: it can not express recursive queries. In particular, parity test is not definable in BQL. We consider augmenting BQL with powerbag and structural recursion to overcome this deficiency. In contrast to the relational case, where powerset and structural recursion are equivalent...
Local Properties of Query Languages
"... predeterminedportionoftheinput.Examplesincludeallrelationalcalculusqueries. everyrelationalcalculus(rstorder)queryislocal,thegeneralresultsprovedforlocalqueriescan manyeasyinexpressibilityproofsforlocalqueries.Wethenconsideracloselyrelatedproperty, namely,theboundeddegreeproperty.Itdescribestheoutp ..."
Abstract

Cited by 33 (21 self)
 Add to MetaCart
(Show Context)
predeterminedportionoftheinput.Examplesincludeallrelationalcalculusqueries. everyrelationalcalculus(rstorder)queryislocal,thegeneralresultsprovedforlocalqueriescan manyeasyinexpressibilityproofsforlocalqueries.Wethenconsideracloselyrelatedproperty, namely,theboundeddegreeproperty.Itdescribestheoutputsoflocalqueriesonstructuresthat locallylook\simple."Everyquerythatislocalisshowntohavetheboundeddegreeproperty.Since Westartbyprovingageneralresultdescribingoutputsoflocalqueries.Thisresultleadsto toapplythanEhrenfeuchtFrassegames.Wealsoshowthatsomegeneralizationsofthebounded degreepropertythatwereconjecturedtohold,failforrelationalcalculus. beviewedas\otheshelf"strategiesforprovinginexpressibilityresults,whichareofteneasier maintenanceofviews,andshowthatSQLandrelationalcalculusareincapableofmaintainingthe gregates,whichisessentiallyplainSQL,hastheboundeddegreeproperty,thusansweringaques tionthathasbeenopenforseveralyears.Consequently,rstorderquerieswithHartigorRescher quantiersalsohavetheboundeddegreeproperty.Finally,weapplyourresultstoincremental Wethenprovethatthelanguageobtainedfromrelationalcalculusbyaddinggroupingandag
Aggregate functions, conservative extension, and linear orders
 In Proceedings of 4th International Workshop on Database Programming Languages
, 1993
"... Practical database query languages are usually equipped with some aggregate functions. For example, \ nd mean of column " can be expressed in SQL. However, the manner in which aggregate functions were introduced in these query languages leaves something to be desired. BreazuTannen, Buneman, a ..."
Abstract

Cited by 29 (22 self)
 Add to MetaCart
(Show Context)
Practical database query languages are usually equipped with some aggregate functions. For example, \ nd mean of column " can be expressed in SQL. However, the manner in which aggregate functions were introduced in these query languages leaves something to be desired. BreazuTannen, Buneman, and Wong [3] introduced a nested relational languageNRC(=) based on monads [16, 24] and structural recursion [1, 2]. It was shown in Wong [27] that this language is equivalent to the nested relational algebras of Thomas and Fischer [22], Schek and Scholl [20], and Colby [4]. NRC(=) enjoys certain advantages over these languages: it is naturally embedded in functional languages, it is readily extensible, and it has a compact equational theory. Therefore, it is used in this report as a basis for investigating aggregate functions. In section 2, the nested relational calculus NRC(=) is described. It is then endowed with rational numbers, rational arithmetic, and a summation operator. The augmented language,NRC(Q; +; ; ; ; P; =), is able to express a variety
Normal Forms And Conservative Extension Properties For Query Languages Over Collection Types
 Journal of Computer and System Sciences
, 1995
"... Strong normalization results are obtained for a general language for collection types. An induced normal form for sets and bags is then used to show that the class of functions whose input has height (that is, the maximal depth of nestings of sets/bags/lists in the complex object) at most i and outp ..."
Abstract

Cited by 27 (8 self)
 Add to MetaCart
Strong normalization results are obtained for a general language for collection types. An induced normal form for sets and bags is then used to show that the class of functions whose input has height (that is, the maximal depth of nestings of sets/bags/lists in the complex object) at most i and output has height at most o definable in a nested relational query language without powerset operator is independent of the height of intermediate expressions used. Our proof holds regardless of whether the language is used for querying sets, bags, or lists, even in the presence of variant types. Moreover, the normal forms are useful in a general approach to query optimization. Paredaens and Van Gucht proved a similar result for the special case when i = o = 1. Their result is complemented by Hull and Su who demonstrated the failure of independence when powerset operator is present and i = o = 1. The theorem of Hull and Su was generalized to all i and o by Grumbach and Vianu. Our result generali...
Conservativity of Nested Relational Calculi with Internal Generic Functions
 Information Processing Letters
, 1994
"... It is known that queries in nested relational calculus are independent of the depth of set nesting in the intermediate data and this remains true in the presence of aggregate functions. We prove that this continues to be true if the calculus is augmented with any internal generic family of functions ..."
Abstract

Cited by 23 (17 self)
 Add to MetaCart
(Show Context)
It is known that queries in nested relational calculus are independent of the depth of set nesting in the intermediate data and this remains true in the presence of aggregate functions. We prove that this continues to be true if the calculus is augmented with any internal generic family of functions. 1 Introduction Paredaens and Van Gucht [7] proved that the nested relational calculus is no more expressive than the traditional relational calculus when input and output are flat relations. That is, every query on input and output whose depth of set nesting is at most 1 (or flat relations) can be expressed without using any intermediate data whose depth of set nesting is greater than 1. This result was generalized by Wong [10] who showed that every query on input and output whose depth of set nesting is at most k can be expressed without using any intermediate data whose depth of set nesting is greater than k. Hence the expressive power of the nested relational calculus is independent o...