Results 1 
8 of
8
tps: A theorem proving system for classical type theory
 Journal of Automated Reasoning
, 1996
"... This is a description of TPS, a theorem proving system for classical type theory (Church’s typed λcalculus). TPS has been designed to be a general research tool for manipulating wffs of first and higherorder logic, and searching for proofs of such wffs interactively or automatically, or in a comb ..."
Abstract

Cited by 71 (6 self)
 Add to MetaCart
This is a description of TPS, a theorem proving system for classical type theory (Church’s typed λcalculus). TPS has been designed to be a general research tool for manipulating wffs of first and higherorder logic, and searching for proofs of such wffs interactively or automatically, or in a combination of these modes. An important feature of TPS is the ability to translate between expansion proofs and natural deduction proofs. Examples of theorems which TPS can prove completely automatically are given to illustrate certain aspects of TPS’s behavior and problems of theorem proving in higherorder logic. 7
Set theory for verification: I. From foundations to functions
 J. Auto. Reas
, 1993
"... A logic for specification and verification is derived from the axioms of ZermeloFraenkel set theory. The proofs are performed using the proof assistant Isabelle. Isabelle is generic, supporting several different logics. Isabelle has the flexibility to adapt to variants of set theory. Its higherord ..."
Abstract

Cited by 46 (18 self)
 Add to MetaCart
A logic for specification and verification is derived from the axioms of ZermeloFraenkel set theory. The proofs are performed using the proof assistant Isabelle. Isabelle is generic, supporting several different logics. Isabelle has the flexibility to adapt to variants of set theory. Its higherorder syntax supports the definition of new binding operators. Unknowns in subgoals can be instantiated incrementally. The paper describes the derivation of rules for descriptions, relations and functions, and discusses interactive proofs of Cantor’s Theorem, the Composition of Homomorphisms challenge [9], and Ramsey’s Theorem [5]. A generic proof assistant can stand up against provers dedicated to particular logics. Key words. Isabelle, set theory, generic theorem proving, Ramsey’s Theorem,
TPS: A TheoremProving System for Classical Type Theory
, 1996
"... . This is description of TPS, a theoremproving system for classical type theory (Church's typed #calculus). TPS has been designed to be a general research tool for manipulating wffs of first and higherorder logic, and searching for proofs of such wffs interactively or automatically, or in a comb ..."
Abstract

Cited by 16 (0 self)
 Add to MetaCart
. This is description of TPS, a theoremproving system for classical type theory (Church's typed #calculus). TPS has been designed to be a general research tool for manipulating wffs of first and higherorder logic, and searching for proofs of such wffs interactively or automatically, or in a combination of these modes. An important feature of TPS is the ability to translate between expansion proofs and natural deduction proofs. Examples of theorems that TPS can prove completely automatically are given to illustrate certain aspects of TPS's behavior and problems of theorem proving in higherorder logic. AMS Subject Classification: 0304, 68T15, 03B35, 03B15, 03B10. Key words: higherorder logic, type theory, mating, connection, expansion proof, natural deduction. 1. Introduction TPS is a theoremproving system for classical type theory ## (Church's typed #calculus [20]) which has been under development at Carnegie Mellon University for a number years. This paper gives a general...
An Equational ReEngineering of Set Theories
 Automated Deduction in Classical and NonClassical Logics, LNCS 1761 (LNAI
, 1998
"... New successes in dealing with set theories by means of stateoftheart theoremprovers may ensue from terse and concise axiomatizations, such as can be moulded in the framework of the (fully equational) TarskiGivant map calculus. In this paper we carry out this task in detail, setting the ground fo ..."
Abstract

Cited by 6 (6 self)
 Add to MetaCart
New successes in dealing with set theories by means of stateoftheart theoremprovers may ensue from terse and concise axiomatizations, such as can be moulded in the framework of the (fully equational) TarskiGivant map calculus. In this paper we carry out this task in detail, setting the ground for a number of experiments. Key words: Set theory, relation algebras, firstorder theoremproving, algebraic logic. 1 Introduction Like other mature fields of mathematics, Set Theory deserves sustained efforts that bring to light richer and richer decidable fragments of it [5], general inference rules for reasoning in it [23, 2], effective proof strategies based on its domainknowledge, and so forth. Advances in this specialized area of automated reasoning tend, in spite of their steadiness, to be slow compared to the overall progress in the field. Many experiments with set theories have hence been carried out with standard theoremproving systems. Still today such experiments pose consider...
Solving for Set Variables in HigherOrder Theorem Proving
 Proceedings of the 18th International Conference on Automated Deduction
, 2002
"... In higherorder logic, we must consider literals with exible (set variable) heads. Set variables may be instantiated with logical formulas of arbitrary complexity. An alternative to guessing the logical structures of instantiations for set variables is to solve for sets satisfying constraints. U ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
In higherorder logic, we must consider literals with exible (set variable) heads. Set variables may be instantiated with logical formulas of arbitrary complexity. An alternative to guessing the logical structures of instantiations for set variables is to solve for sets satisfying constraints. Using the KnasterTarski Fixed Point Theorem [ 15 ] , constraints whose solutions require recursive de nitions can be solved as xed points of monotone set functions. In this paper, we consider an approach to higherorder theorem proving which intertwines conventional theorem proving in the form of mating search with generating and solving set constraints.
The Calculus of Constructions as a Framework for Proof Search with Set Variable Instantiation
, 2000
"... ..."
Proof Search with Set Variable Instantiation in the Calculus of Constructions
 Automated Deduction: CADE13, volume 1104 of Lecture Notes in Arti Intelligence
, 1996
"... . We show how a procedure developed by Bledsoe for automatically finding substitution instances for set variables in higherorder logic can be adapted to provide increased automation in proof search in the Calculus of Constructions (CC). Bledsoe's procedure operates on an extension of firstorder lo ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
. We show how a procedure developed by Bledsoe for automatically finding substitution instances for set variables in higherorder logic can be adapted to provide increased automation in proof search in the Calculus of Constructions (CC). Bledsoe's procedure operates on an extension of firstorder logic that allows existential quantification over set variables. The method finds maximal solutions for this special class of higherorder variables. This class of variables can also be identified in CC. The existence of a correspondence between higherorder logic and higherorder type theories such as CC is wellknown. CC can be viewed as an extension of higherorder logic where the basic terms of the language, the simplytyped terms, are replaced with terms containing dependent types. We adapt Bledsoe's procedure to the corresponding class of variables in CC and extend it to handle terms with dependent types. 1 Introduction Both higherorder logic and higherorder type theories serve as th...
A Computing Medley on Program Verification, Specification and Automated Reasoning
"... A brief overview of the science of formal program verification is presented, a topic close to the heart of Derrick Kourie to whom this article is dedicated in honour of his sixtieth birthday. No account would do justice to this topic without referring to the wellknown FloydHoare axiomatic approach ..."
Abstract
 Add to MetaCart
A brief overview of the science of formal program verification is presented, a topic close to the heart of Derrick Kourie to whom this article is dedicated in honour of his sixtieth birthday. No account would do justice to this topic without referring to the wellknown FloydHoare axiomatic approach to the verification and construction of programs. The specification of a program in terms of a precondition, program statement and postcondition is touched on and is followed by specification methods employed during the earlier phases of system development. Reasoning about the properties of a specification is a rewarding exercise since it may lead to useful insights. Modern specification languages often support settheoretic constructs and these pose demanding challenges to automated reasoning programs. To this end the science of Automated Reasoning has made remarkable progress as far as tool usage is concerned.