Results 1 
2 of
2
An oracle builder’s toolkit
, 2002
"... We show how to use various notions of genericity as tools in oracle creation. In particular, 1. we give an abstract definition of genericity that encompasses a large collection of different generic notions; 2. we consider a new complexity class AWPP, which contains BQP (quantum polynomial time), and ..."
Abstract

Cited by 46 (11 self)
 Add to MetaCart
We show how to use various notions of genericity as tools in oracle creation. In particular, 1. we give an abstract definition of genericity that encompasses a large collection of different generic notions; 2. we consider a new complexity class AWPP, which contains BQP (quantum polynomial time), and infer several strong collapses relative to SPgenerics; 3. we show that under additional assumptions these collapses also occur relative to Cohen generics; 4. we show that relative to SPgenerics, ULIN ∩ coULIN ̸ ⊆ DTIME(n k) for any k, where ULIN is unambiguous linear time, despite the fact that UP ∪ (NP ∩ coNP) ⊆ P relative to these generics; 5. we show that there is an oracle relative to which NP/1∩coNP/1 ̸ ⊆ (NP∩coNP)/poly; and 6. we use a specialized notion of genericity to create an oracle relative to which NP BPP ̸ ⊇ MA.
Natural Definability in Degree Structures
"... . A major focus of research in computability theory in recent years has involved denability issues in degree structures. There has been much success in getting general results by coding methods that translate rst or second order arithmetic into the structures. In this paper we concentrate on the ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
. A major focus of research in computability theory in recent years has involved denability issues in degree structures. There has been much success in getting general results by coding methods that translate rst or second order arithmetic into the structures. In this paper we concentrate on the issues of getting denitions of interesting, apparently external, relations on degrees that are ordertheoretically natural in the structures D and R of all the Turing degrees and of the r.e. Turing degrees, respectively. Of course, we have no formal denition of natural but we oer some guidelines, examples and suggestions for further research. 1. Introduction A major focus of research in computability theory in recent years has involved denability issues in degree structures. The basic question is, which interesting apparently external relations on degrees can actually be dened in the structures themselves, that is, in the rst order language with the single fundamental relation...