Results 1 
4 of
4
Signature Schemes Based on the Strong RSA Assumption
 ACM TRANSACTIONS ON INFORMATION AND SYSTEM SECURITY
, 1998
"... We describe and analyze a new digital signature scheme. The new scheme is quite efficient, does not require the the signer to maintain any state, and can be proven secure against adaptive chosen message attack under a reasonable intractability assumption, the socalled Strong RSA Assumption. Moreove ..."
Abstract

Cited by 150 (8 self)
 Add to MetaCart
We describe and analyze a new digital signature scheme. The new scheme is quite efficient, does not require the the signer to maintain any state, and can be proven secure against adaptive chosen message attack under a reasonable intractability assumption, the socalled Strong RSA Assumption. Moreover, a hash function can be incorporated into the scheme in such a way that it is also secure in the random oracle model under the standard RSA Assumption.
Primality testing using elliptic curves
 Journal of the ACM
, 1999
"... Abstract. We present a primality proving algorithmâ€”a probabilistic primality test that produces short certificates of primality on prime inputs. We prove that the test runs in expected polynomial time for all but a vanishingly small fraction of the primes. As a corollary, we obtain an algorithm for ..."
Abstract

Cited by 22 (0 self)
 Add to MetaCart
Abstract. We present a primality proving algorithmâ€”a probabilistic primality test that produces short certificates of primality on prime inputs. We prove that the test runs in expected polynomial time for all but a vanishingly small fraction of the primes. As a corollary, we obtain an algorithm for generating large certified primes with distribution statistically close to uniform. Under the conjecture that the gap between consecutive primes is bounded by some polynomial in their size, the test is shown to run in expected polynomial time for all primes, yielding a Las Vegas primality test. Our test is based on a new methodology for applying group theory to the problem of prime certification, and the application of this methodology using groups generated by elliptic curves over finite fields. We note that our methodology and methods have been subsequently used and improved upon, most notably in the primality proving algorithm of Adleman and Huang using hyperelliptic curves and
A Lower Bound for Primality
, 1999
"... Recent work by Bernasconi, Damm and Shparlinski proved lower bounds on the circuit complexity of the squarefree numbers, and raised as an open question if similar (or stronger) lower bounds could be proved for the set of prime numbers. In this short note, we answer this question affirmatively, by s ..."
Abstract

Cited by 11 (5 self)
 Add to MetaCart
Recent work by Bernasconi, Damm and Shparlinski proved lower bounds on the circuit complexity of the squarefree numbers, and raised as an open question if similar (or stronger) lower bounds could be proved for the set of prime numbers. In this short note, we answer this question affirmatively, by showing that the set of prime numbers (represented in the usual binary notation) is not contained in AC 0 [p] for any prime p. Similar lower bounds are presented for the set of squarefree numbers, and for the problem of computing the greatest common divisor of two numbers. 1 Introduction What is the computational complexity of the set of prime numbers? There is a large body of work presenting important upper bounds on the complexity of the set of primes (including [AH87, APR83, Mil76, R80, SS77]), but  Supported in part by NSF grant CCR9734918. y Supported in part by NSF grant CCR9700239. z Supported in part by ARC grant A69700294. as was pointed out recently in [BDS98a, BDS9...
A Lower Bound for Primality
, 1999
"... Recent work by Bernasconi, Damm and Shparlinski showed that the set of squarefree numbers is not in AC , and raised as an open question whether similar (or stronger) lower bounds could be proved for the set of prime numbers. In this note, we show that the Boolean majority function is AC  ..."
Abstract
 Add to MetaCart
Recent work by Bernasconi, Damm and Shparlinski showed that the set of squarefree numbers is not in AC , and raised as an open question whether similar (or stronger) lower bounds could be proved for the set of prime numbers. In this note, we show that the Boolean majority function is AC Turing reducible to the set of prime numbers (represented in binary). From known lower bounds on Maj (due to Razborov and Smolensky) we conclude that primality cannot be tested in AC [p] for any prime p. Similar results are obtained for the set of squarefree numbers, and for the problem of computing the greatest common divisor of two numbers.