Results 1 
4 of
4
Operads In HigherDimensional Category Theory
, 2004
"... The purpose of this paper is to set up a theory of generalized operads and multicategories and to use it as a language in which to propose a definition of weak ncategory. Included is a full explanation of why the proposed definition of ncategory is a reasonable one, and of what happens when n < ..."
Abstract

Cited by 32 (2 self)
 Add to MetaCart
The purpose of this paper is to set up a theory of generalized operads and multicategories and to use it as a language in which to propose a definition of weak ncategory. Included is a full explanation of why the proposed definition of ncategory is a reasonable one, and of what happens when n <= 2. Generalized operads and multicategories play other parts in higherdimensional algebra too, some of which are outlined here: for instance, they can be used to simplify the opetopic approach to ncategories expounded by Baez, Dolan and others, and are a natural language in which to discuss enrichment of categorical structures.
Pasting diagrams in ncategories with applications to coherence theorems and categories of paths
, 1988
"... ..."
Finite products are biproducts in a compact closed category
 Journal of Pure and Applied Algebra
"... If a compact closed category has finite products or finite coproducts then it in fact has finite biproducts, and so is semiadditive. 1 ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
If a compact closed category has finite products or finite coproducts then it in fact has finite biproducts, and so is semiadditive. 1
1 Physics, Topology, Logic and Computation:
"... Category theory is a very general formalism, but there is a certain special way that physicists use categories which turns out to have close analogues in topology, logic and computation. A category has objects and morphisms, which represent things and ways to go between things. In physics, the objec ..."
Abstract
 Add to MetaCart
Category theory is a very general formalism, but there is a certain special way that physicists use categories which turns out to have close analogues in topology, logic and computation. A category has objects and morphisms, which represent things and ways to go between things. In physics, the objects are often physical systems, and the morphisms are processes turning