Results 1 
4 of
4
A Prolog Technology Theorem Prover: Implementation by an Extended Prolog Compiler
 Journal of Automated Reasoning
, 1987
"... A Prolog technology theorem prover (PTTP) is an extension of Prolog that is complete for the full firstorder predicate calculus. It differs from Prolog in its use of unification with the occurs check for soundness, the modelelimination reduction rule that is added to Prolog inferences to make the ..."
Abstract

Cited by 100 (2 self)
 Add to MetaCart
A Prolog technology theorem prover (PTTP) is an extension of Prolog that is complete for the full firstorder predicate calculus. It differs from Prolog in its use of unification with the occurs check for soundness, the modelelimination reduction rule that is added to Prolog inferences to make the inference system complete, and depthfirst iterativedeepening search instead of unbounded depthfirst search to make the search strategy complete. A Prolog technology theorem prover has been implemented by an extended PrologtoLISP compiler that supports these additional features. It is capable of proving theorems in the full firstorder predicate calculus at a rate of thousands of inferences per second. 1 This is a revised and expanded version of a paper presented at the 8th International Conference on Automated Deduction, Oxford, England, July 1986, and is to appear in Journal of Automated Reasoning. This research was supported by the Defense Advanced Research Projects Agency under Co...
Otter: The CADE13 Competition Incarnations
 JOURNAL OF AUTOMATED REASONING
, 1997
"... This article discusses the two incarnations of Otter entered in the CADE13 Automated Theorem Proving Competition. Also presented are some historical background, a summary of applications that have led to new results in mathematics and logic, and a general discussion of Otter. ..."
Abstract

Cited by 44 (3 self)
 Add to MetaCart
This article discusses the two incarnations of Otter entered in the CADE13 Automated Theorem Proving Competition. Also presented are some historical background, a summary of applications that have led to new results in mathematics and logic, and a general discussion of Otter.
Experiments with DiscriminationTree Indexing and Path Indexing for Term Retrieval
 JOURNAL OF AUTOMATED REASONING
, 1990
"... This article addresses the problem of indexing and retrieving firstorder predicate calculus terms in the context of automated deduction programs. The four retrieval operations of concern are to find variants, generalizations, instances, and terms that unify with a given term. Discriminationtree ..."
Abstract

Cited by 43 (0 self)
 Add to MetaCart
This article addresses the problem of indexing and retrieving firstorder predicate calculus terms in the context of automated deduction programs. The four retrieval operations of concern are to find variants, generalizations, instances, and terms that unify with a given term. Discriminationtree indexing is reviewed, and several variations are presented. The pathindexing method is also reviewed. Experiments were conducted on large sets of terms to determine how the properties of the terms affect the performance of the two indexing methods. Results of the experiments are presented.
Abstraction Tree Indexing for Terms
, 1990
"... An indexing technique for firstorder predicate logic terms and literals is proposed. It exploits the lattice structure of terms, generated by the usual instance relation, to provide for a given "query term" fast access to all Tunifiable terms, Tinstances (backward subsumption) and Tgeneralized ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
An indexing technique for firstorder predicate logic terms and literals is proposed. It exploits the lattice structure of terms, generated by the usual instance relation, to provide for a given "query term" fast access to all Tunifiable terms, Tinstances (backward subsumption) and Tgeneralized terms (forward subsumption) where T is any finitary unification theory. In the best case one single unification or matching operation respectively is sufficient to access a large number of unifiable terms or instances at once.