Results 1 
2 of
2
YAC: Yet Another Computation Model of SelfAssembly
, 1999
"... . This paper proposes a new model for DNA computation termed YAC based on selfassembly principle. The model has three advantages: (i) It has the universal computability of Turing machines. (ii) It requires only simple and basic molecular biological operations. Besides annealing and melting in a o ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
(Show Context)
. This paper proposes a new model for DNA computation termed YAC based on selfassembly principle. The model has three advantages: (i) It has the universal computability of Turing machines. (ii) It requires only simple and basic molecular biological operations. Besides annealing and melting in a onepot reaction, only the detection of a completely hybridized double stranded molecule is used. (iii) Therefore, a molecular biological implementation of the model seems highly feasible. In order to make YAC computation more resource efficient, we introduce an incremental computation method. 1. Introduction In recent intensive study of normal form theorems for the generative grammars in formal language theory, quite a few number of normal form theorems for a variety of types of grammars have been presented, ranging from regular grammars to phrasestructure grammars in Chomsky's hierarchy. Among others, some of the normal forms for phrasestructure grammars can be of crucially importance wh...
Computation = Selfassembly + Conformational Change: Toward New Computing Paradigms
 Department of Mathematics, School of Education, Waseda University
, 1999
"... . Molecular Computing is a novel computing paradigm recently emerged from and stimulated by a groundbreaking wet lab experimental work by Adleman in 1994. Since then, a great number of computation models have been proposed in the context of both biomolecular experiments and theoretical computer scie ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
(Show Context)
. Molecular Computing is a novel computing paradigm recently emerged from and stimulated by a groundbreaking wet lab experimental work by Adleman in 1994. Since then, a great number of computation models have been proposed in the context of both biomolecular experiments and theoretical computer science (e.g., [2, 3, 7, 9, 10, 11, 13, 17, 19, 20]), trying to break through the socalled NPcompleteness barrier or to establish new computation paradigms with universal capability. This paper proposes new computing paradigms based on selfassembly and conformational change. These two principles have already appeared in an extensive variety of literature in natural science, while relatively a few studies have discussed these two together in the context of computing. In order to demonstrate a new computing schema : computation = selfassembly + conformational change, we first discuss a framework of computing model CCC (Computing by Conformational Change) by showing examples of solving several N...