Results 1 
4 of
4
On Frege and Extended Frege Proof Systems
, 1993
"... We propose a framework for proving lower bounds to the size of EF  proofs (equivalently, to the number of proofsteps in Fproofs) in terms of boolean valuations . The concept is motivated by properties of propositional provability in models of bounded arithmetic and it is a finitisation of a parti ..."
Abstract

Cited by 21 (2 self)
 Add to MetaCart
We propose a framework for proving lower bounds to the size of EF  proofs (equivalently, to the number of proofsteps in Fproofs) in terms of boolean valuations . The concept is motivated by properties of propositional provability in models of bounded arithmetic and it is a finitisation of a particular forcing construction explained also in the paper. It reduces the question of proving a lower bound to the question of constructing a partial boolean algebra and a map of formulas into that algebra with particular properties. We show that in principle one can obtain via this method optimal lower bounds (up to a polynomial increase). Introduction A propositional proof system is any polynomial time function P whose range is exactly the set of tautologies TAUT, cf. [17]. For ø a tautology any string ß such that P (ß) = ø is called a P proof of ø . Any usual propositional calculus, be it resolution or extended resolution, a Hilbert style system based on finitely many axiom schemes and inf...
Parallel computable higher type functionals (Extended Abstract)
 In Proceedings of IEEE 34th Annual Symposium on Foundations of Computer Science, Nov 35
, 1993
"... ) Peter Clote A. Ignjatovic y B. Kapron z 1 Introduction to higher type functionals The primary aim of this paper is to introduce higher type analogues of some familiar parallel complexity classes, and to show that these higher type classes can be characterized in significantly different way ..."
Abstract

Cited by 4 (4 self)
 Add to MetaCart
) Peter Clote A. Ignjatovic y B. Kapron z 1 Introduction to higher type functionals The primary aim of this paper is to introduce higher type analogues of some familiar parallel complexity classes, and to show that these higher type classes can be characterized in significantly different ways. Recursiontheoretic, prooftheoretic and machinetheoretic characterizations are given for various classes, providing evidence of their naturalness. In this section, we motivate the approach of our work. In proof theory, primitive recursive functionals of higher type were introduced in Godel's Dialectica [13] paper, where they were used to "witness" the truth of arithmetic formulas. For instance, a function f witnesses the formula 8x9y\Phi(x; y), where \Phi is quantifierfree, provided that 8x\Phi(x; f(x)); while a type 2 functional F witnesses the formula 8x9y8u9v\Phi(x; y; u; v), provided that 8x8u\Phi(x; f(x); u; F (x; f(x); u)): Godel's formal system T is a variant of the finit...
On theories of bounded arithmetic for NC¹
, 2008
"... We develop an arithmetical theory VNC¹∗ and its variant VNC¹∗, corresponding to “slightly nonuniform” NC¹. Our theories sit between VNC¹ and VL, and allow evaluation of logdepth bounded fanin circuits under limited conditions. Propositional translations of ΣB 0 (LVNC 1)formulas provable in VNC¹∗ ..."
Abstract
 Add to MetaCart
We develop an arithmetical theory VNC¹∗ and its variant VNC¹∗, corresponding to “slightly nonuniform” NC¹. Our theories sit between VNC¹ and VL, and allow evaluation of logdepth bounded fanin circuits under limited conditions. Propositional translations of ΣB 0 (LVNC 1)formulas provable in VNC¹∗ admit Luniform polynomialsize Frege proofs.