Results 1 
3 of
3
Nondeterministic Stack Register Machines
, 1996
"... For integer k 0, let srm(n O(1) ; k) denote the collection of relations computable by a stack register machine with stack registers bounded by a polynomial p(n) in the input n, and work registers bounded by k. Let nsrm(n O(1) ; k) denote the analogous class accepted by nondeterministic stack r ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
For integer k 0, let srm(n O(1) ; k) denote the collection of relations computable by a stack register machine with stack registers bounded by a polynomial p(n) in the input n, and work registers bounded by k. Let nsrm(n O(1) ; k) denote the analogous class accepted by nondeterministic stack register machines. In this paper, nondeterminism is shown to provide no additional power. Specifically, nsrm(n O(1) ; 0) = srm(n O(1) ; 0) nsrm(n O(1) ; 1) = srm(n O(1) ; 1) nsrm(n O(1) ; k) = srm(n O(1) ; k); for k 4 srm(n O(1) ; k) = alintime ; for k 4:
Complexitytheoretic hierarchies induced by fragments of Gödel’s T
, 2007
"... We introduce two hierarchies of unknown ordinal height. The hierarchies are induced by natural fragments of a calculus based on finite types and Gödel’s T, and all the classes in the hierarchies are uniformly defined without referring to explicit bounds. Deterministic complexity classes like logsp ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
We introduce two hierarchies of unknown ordinal height. The hierarchies are induced by natural fragments of a calculus based on finite types and Gödel’s T, and all the classes in the hierarchies are uniformly defined without referring to explicit bounds. Deterministic complexity classes like logspace, p, pspace, linspace and exp are captured by the hierarchies. Typical subrecursive classes are also captured, e.g. the small relational Grzegorczyk classes E 0 ∗, E 1 ∗ and E 2 ∗.