Results 1  10
of
20
Does Mathematics Need New Axioms?
 American Mathematical Monthly
, 1999
"... this article I will be looking at the leading question from the point of view of the logician, and for a substantial part of that, from the perspective of one supremely important logician: Kurt Godel. From the time of his stunning incompleteness results in 1931 to the end of his life, Godel called f ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
this article I will be looking at the leading question from the point of view of the logician, and for a substantial part of that, from the perspective of one supremely important logician: Kurt Godel. From the time of his stunning incompleteness results in 1931 to the end of his life, Godel called for the pursuit of new axioms to settle undecided arithmetical problems. And from 1947 on, with the publication of his unusual article, "What is Cantor's continuum problem?" [11], he called in addition for the pursuit of new axioms to settle Cantor's famous conjecture about the cardinal number of the continuum. In both cases, he pointed primarily to schemes of higher infinity in set theory as the direction in which to seek these new principles. Logicians have learned a great deal in recent years that is relevant to Godel's program, but there is considerable disagreement about what conclusions to draw from their results. I'm far from unbiased in this respect, and you'll see how I come out on these matters by the end of this essay, but I will try to give you a fair presentation of other positions along the way so you can decide for yourself which you favor.
Does category theory provide a framework for mathematical structuralism?
 PHILOSOPHIA MATHEMATICA
, 2003
"... Category theory and topos theory have been seen as providing a structuralist framework for mathematics autonomous vis à vis set theory. It is argued here that these theories require a background logic of relations and substantive assumptions addressing mathematical existence of categories themselves ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
Category theory and topos theory have been seen as providing a structuralist framework for mathematics autonomous vis à vis set theory. It is argued here that these theories require a background logic of relations and substantive assumptions addressing mathematical existence of categories themselves. We propose a synthesis of Bell’s “manytopoi” view and modalstructuralism. Surprisingly, a combination of mereology and plural quantification suffices to describe hypothetical large domains, recovering the Grothendieck method of universes. Both topos theory and set theory can be carried out relative to such domains; puzzles about “large categories ” and “proper classes ” are handled in a
On Founding the Theory of Algorithms
, 1998
"... machines and implementations The first definition of an abstract machine was given by Turing, in the classic [20]. Without repeating here the wellknown definition (e.g., see [6]), 13 we recall that each Turing machine M is equipped with a "semiinfinite tape" which it uses both to compute and al ..."
Abstract

Cited by 9 (4 self)
 Add to MetaCart
machines and implementations The first definition of an abstract machine was given by Turing, in the classic [20]. Without repeating here the wellknown definition (e.g., see [6]), 13 we recall that each Turing machine M is equipped with a "semiinfinite tape" which it uses both to compute and also to communicate with its environment: To determine the value f(n) (if any) of the partial function 14 f : N * N computed by M , we put n on the tape in some standard way, e.g., by placing n + 1 consecutive 1s at its beginning; we start the machine in some specified, initial, internal state q 0 and looking at the leftmost end of the tape; and we wait until the machine stops (if it does), at which time the value f(n) can be read off the tape, by counting the successive 1s at the left end. Turing argued that the numbertheoretic functions which can (in principle) be computed by any deterministic, physical device are exactly those which can be computed by a Turing machine, and the correspon...
The Mathematical Development Of Set Theory  From Cantor To Cohen
 The Bulletin of Symbolic Logic
, 1996
"... This article is dedicated to Professor Burton Dreben on his coming of age. I owe him particular thanks for his careful reading and numerous suggestions for improvement. My thanks go also to Jose Ruiz and the referee for their helpful comments. Parts of this account were given at the 1995 summer meet ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
This article is dedicated to Professor Burton Dreben on his coming of age. I owe him particular thanks for his careful reading and numerous suggestions for improvement. My thanks go also to Jose Ruiz and the referee for their helpful comments. Parts of this account were given at the 1995 summer meeting of the Association for Symbolic Logic at Haifa, in the Massachusetts Institute of Technology logic seminar, and to the Paris Logic Group. The author would like to express his thanks to the various organizers, as well as his gratitude to the Hebrew University of Jerusalem for its hospitality during the preparation of this article in the autumn of 1995.
Why sets?
 PILLARS OF COMPUTER SCIENCE: ESSAYS DEDICATED TO BORIS (BOAZ) TRAKHTENBROT ON THE OCCASION OF HIS 85TH BIRTHDAY, VOLUME 4800 OF LECTURE NOTES IN COMPUTER SCIENCE
, 2008
"... Sets play a key role in foundations of mathematics. Why? To what extent is it an accident of history? Imagine that you have a chance to talk to mathematicians from a faraway planet. Would their mathematics be setbased? What are the alternatives to the settheoretic foundation of mathematics? Besi ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Sets play a key role in foundations of mathematics. Why? To what extent is it an accident of history? Imagine that you have a chance to talk to mathematicians from a faraway planet. Would their mathematics be setbased? What are the alternatives to the settheoretic foundation of mathematics? Besides, set theory seems to play a significant role in computer science; is there a good justification for that? We discuss these and some related issues.
Models Of SecondOrder Zermelo Set Theory
, 1999
"... The paper discusses models of secondorder versions of Zermelo set theory that are not given by certain initial segments of the cumulative hierarchy. These models show that common versions of infinity do not, absent replacement, guarantee the existence of the first transfinite stage of the cumulativ ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
The paper discusses models of secondorder versions of Zermelo set theory that are not given by certain initial segments of the cumulative hierarchy. These models show that common versions of infinity do not, absent replacement, guarantee the existence of the first transfinite stage of the cumulative hierarchy. Another construction shows that a version of secondorder Zermelo set theory that results when infinity is strengthened to deliver the existence of that stage is satisfied in nonwellfounded models. A variant of secondorder Zermelo set theory is considered all of whose models are given by certain initial segments of the hierarchy.
The Development of Mathematical Logic from Russell to Tarski: 19001935
"... this paper that from the logical point of view set theory is the proper foundation of the mathematical sciences. Thus, he adds, if one wants to give general definitional principles that hold for all of mathematics it is necessary to account for the definitional principles of set theory. First, he b ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
this paper that from the logical point of view set theory is the proper foundation of the mathematical sciences. Thus, he adds, if one wants to give general definitional principles that hold for all of mathematics it is necessary to account for the definitional principles of set theory. First, he begins his definitional analysis with geometry. Relying on Pieri's work on the foundations of geometry he starts with two relations, x y and E(x, y , z). E(x, y , z) means that y and z are equidistant from x. Then he adds that all definitions in Pieri's geometry can be obtained by closing the basic relationships under five principles: 1. Permutation of variables: if A(x,y , z) is a ternary relation so is A(x,z,y)
Hierarchies Ontological and Ideological
"... Abstract: Gödel claimed that ZermeloFraenkel set theory is ‘what becomes of the theory of types if certain superfluous restrictions are removed’. The aim of this paper is to develop a clearer understanding of Gödel’s remark, and of the surrounding philosophical terrain. In connection with this, we ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Abstract: Gödel claimed that ZermeloFraenkel set theory is ‘what becomes of the theory of types if certain superfluous restrictions are removed’. The aim of this paper is to develop a clearer understanding of Gödel’s remark, and of the surrounding philosophical terrain. In connection with this, we discuss some technical issues concerning infinitary type theories and the programme of developing the semantics for higherorder languages in other higherorder languages. 1
Date Declaration Set Theory Without the Axiom of Foundation
"... I declare that this essay is work done as part of the Part III Examination. It is the result of my own work, and except where stated otherwise, includes nothing which was performed in collaboration. No part of this essay has been submitted for a degree or any such qualification. ..."
Abstract
 Add to MetaCart
I declare that this essay is work done as part of the Part III Examination. It is the result of my own work, and except where stated otherwise, includes nothing which was performed in collaboration. No part of this essay has been submitted for a degree or any such qualification.